Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T00:06:22.965Z Has data issue: false hasContentIssue false

Fluidized Bed Steam Reformed (FBSR) Mineral Waste Forms: Characterization and Durability Testing

Published online by Cambridge University Press:  19 October 2011

Carol Jantzen
Affiliation:
[email protected], Savannah River National Laboratory, Bldg. 773A, Aiken, SC, 29803, United States, 803-725-2374, 803-725-4704
Troy H. Lorier
Affiliation:
[email protected], Savannah River National Laboratory, Aiken, SC, 29803, United States
John M. Pareizs
Affiliation:
[email protected], Savannah River National Laboratory, Aiken, SC, 29803, United States
James C. Marra
Affiliation:
[email protected], Savannah River National Laboratory, Aiken, SC, 29803, United States
Get access

Abstract

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750°C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mason, J. B., Oliver, T. W., Carson, M. P., Hill, G. M., G.M. WM 99 Conference (1999).Google Scholar
2. Mason, J. B., McKibben, J., Ryan, K., Schmoker, D., J. WM 03 Conference (2003).Google Scholar
3. Jantzen, C. M., U.S. DOE Report WSRC-TR-2002-00317 (2002).Google Scholar
4. Jantzen, C. M., Ceramic Transactions 155, 319329 (2004).Google Scholar
5. McGrail, B. P., Schaef, H. T., Martin, P. F., Bacon, D. H., Rodriguez, E. A., McCready, D. E., Primak, A. N., and Orr, R. D., U.S. DOE Report PNWD-3288 (2003).Google Scholar
6. Olson, A. L., Soelberg, N. R., Marshall, D. W., Anderson, G. L., U.S. DOE Report INEEL/EXT- 04-02492; (2004).Google Scholar
7. Soleberg, N. R., Marshall, D. W., Bates, S. O., Taylor, D. D., U.S. DOE Report INEEL/EXT-04- 01493 (2004).Google Scholar
8. Olson, A. L., Soelberg, N. R., Marshall, D. W., Anderson, G. L., U.S. DOE Report INEEL/EXT- 04-02564; (2004).Google Scholar
9. Rassat, S. D., Mahoney, L. A., Russell, R. L., Bryan, S. A., and Sell, R. L., U.S. DOE Report PNNL-14194-Rev. 1 (2003).Google Scholar
10. Pareizs, J. M., Jantzen, C. M., Lorier, T. H., U.S. DOE Report WSRC-TR-2005-00102 (2005).Google Scholar
11. Jantzen, C. M., Pareizs, J. M., Lorier, T. H., and Marra, J. M., Ceramic Trans., 176, 121137 (2006).Google Scholar
12. McGrail, B. P., U.S. DOE Report PNNL-14414 (2003).Google Scholar
13. Lorier, T. H., Pareizs, J. M., and Jantzen, C. M., U.S. DOE Report, WSRC-TR-2005-00124 (2005).Google Scholar
14. Jantzen, C. M., WM 06 Conference (2006).Google Scholar
15. Knauss, K. G., Bourcier, W. L., McKeegan, K. D., Merzbacher, C. I., Nguyen, S. N., Ryerson, R. J., Smith, D. K., Weed, H. C., and Newton, L., L. Sci.Basis Nucl. Waste Mgt., XIII, Mat. Res. Soc., Pittsburgh, PA, 371381 (1990).Google Scholar
16. Jantzen, C. M., Clarke, D. R., Morgan, P. E. D., , P.E.D. and Harker, A. B., J. Am. Ceram. Soc. 65[6], 292300 (1982).Google Scholar
17. Dana, E. S., “A Textbook of Mineralogy,” John Wiley & Sons, Inc., New York, 851pp (1932).Google Scholar
18. Deer, W. A., Howie, R. A., and Zussman, J., “Rock-Forming Minerals,” Vol IV, John Wiley & Sons, Inc., New York, 435pp. (1963).Google Scholar
19. Brookins, D. G., “Geochemical Aspects of Radioactive Waste Disposal,” Springer-Verlag, New York, 347pp. (1984).Google Scholar
20. Mattigod, S. V., McGrail, B. P., McCready, D. E., Wang, L. Q., Parker, K. E., and Young, J. S., Submitted to Microsporous and Mesoporous Materials (2006).Google Scholar
21. Tole, M. P., Lasaga, A. C., Pantano, C., White, W. B., Geochimica Cosmochimica Acta, 50, 379392 (1985).Google Scholar
22. Hamilton, J. P., Brantley, S. L., Pantano, C. G., Criscenti, L. J., Kubiki, J. D., Geochimica Cosmochimica Acta, 65 [21], 36833702 (2001).Google Scholar
23. Lorier, T. H., Jantzen, C. M., Marra, J. C., and Pareizs, J. M., Ceramic Trans. V. 176, 111119 (2006).Google Scholar