Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T08:24:26.571Z Has data issue: false hasContentIssue false

Fluidic Surface-Tension-Directed Self-Assembly of Miniaturized Semiconductor Dies Across Length Scales and 3D Topologies

Published online by Cambridge University Press:  31 January 2011

Heiko Jacobs
Affiliation:
[email protected], University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, Minnesota, United States
Robert J Knuesel
Affiliation:
[email protected], University of Minnesota, Electrical Engineering, 200 Union St SE, Minneapolis, Minnesota, 55455, United States
Get access

Abstract

This proceeding discusses recent progress on engineered fluidic surface-tension-directed self-assembly involving liquid solder. The process is applied to the assembly of discrete inorganic semiconductor device components at different length scales producing electrically interconnected devices and systems. Prior results include assembly with unique angular orientation and contact pad registration, parallel packaging, and the programmable assembly of various types of light emitting diodes. Recent progress on the scaling of the minimal die size from 300 to 30 μm is discussed which required the development of a new delivery system to concentrate and effectively introduce the components to solder-based receptors. Specifically, components are pre-oriented at a liquid-air or liquid-liquid interface and transferred onto the solder based receptors using a dynamic contact angle with a dipping process. Recent applications include the tiling of curved and 3D surfaces with single crystal semiconductors including the formation of flexible 3D solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cohn, M. B. Bohringer, K. F. Noworolski, J. M. Singh, A. Keller, C. G. Goldberg, K. Y. Howe, R. T. Proceedings of SPIE 1998, 3512, 2.Google Scholar
[2] Clark, T. D. Tien, J. Duffy, D. C. Paul, K. E. Whitesides, G. M. Journal of the American Chemical Society 2001, 123, 7677.Google Scholar
[3] Fearing, R. S. Proceedings 1995, 212.Google Scholar
[4] Zhang, S. Nature Biotechnology 2003, 21, 1171.Google Scholar
[5] Whitesides, G. M. Grzybowski, B. Science 2002, 295, 2418.Google Scholar
[6] Yeh, H. J. J. Smith, J. S. IEEE Photonics Technology Letters 1994, 6, 706.Google Scholar
[7] Smith, J. S. Yeh, H. J. J. US Patent 1998, 5,824,186.Google Scholar
[8] Gracias, D. H. Tien, J. Breen, T. L. Hsu, C. Whitesides, E. M. Science 2000, 289, 1170.Google Scholar
[9] Boncheva, M. Gracias, D. H. Jacobs, H. O. Whitesides, G. M. Proc. Natl. Acad. Sci. USA 2002, 99, 4937.Google Scholar
[10] Jacobs, H. O. Tao, A. R. Schwartz, A. Gracias, D. H. Whitesides, G. M. Science 2002, 296, 323.Google Scholar
[11] Srinivasan, U. Liepmann, D. Howe, R. T. Journal of Microelectromechanical Systems 2001, 10, 17.Google Scholar
[12] Srinivasan, U. Helmbrecht, M. A. Rembe, C. Muller, R. S. Howe, R. T. IEEE Journal of Selected Topics in Quantum Electronics 2002, 8, 4.Google Scholar
[13] Böhringer, K. F., Srinivasan, U. Howe, R. T. Interlaken, Switzerland, 2001.Google Scholar
[14] Zheng, W. Buhlmann, P. Jacobs, H. O. Proc. Natl. Acad. Sci. USA 2004, 101, 12814.Google Scholar
[15] Zheng, W. Jacobs, H. O. Applied Physics Letters 2004, 85, 3635.Google Scholar
[16] Zheng, W. Jacobs, H. O. Advanced Functional Materials 2005, 15, 732.Google Scholar
[17] Patolsky, F. Zheng, G. Lieber, C. M. Analytical Chemistry 2006, 78, 4260.Google Scholar
[18] Jacobs, H. O. Wei, Z. USA, Provisional Application, March 2006.Google Scholar
[19] Barry, C. R. Jacobs, H. O. Nano Letters 2006, 6, 2790.Google Scholar
[20] Xiong, X. Hanein, Y. Fang, J. Wang, Y. Wang, W. Schwartz, D. T. Bohringer, K. F. Journal of Microelectromechanical Systems 2003, 12, 117.Google Scholar
[21] Stauth, S. A. Parviz, B. A. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 13922.Google Scholar