Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T07:11:32.289Z Has data issue: false hasContentIssue false

First-principles study of point defects in cerium dioxide and comparison to uranium dioxide

Published online by Cambridge University Press:  23 February 2015

Lei Shi
Affiliation:
CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul lez Durance, France.
Emerson Vathonne
Affiliation:
CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul lez Durance, France.
Michel Freyss
Affiliation:
CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul lez Durance, France.
Marjorie Bertolus
Affiliation:
CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul lez Durance, France.
Vincent Oison
Affiliation:
IM2NP, Aix-Marseille University, Marseille, France.
Roland Hayn
Affiliation:
IM2NP, Aix-Marseille University, Marseille, France.
Get access

Abstract

Uranium dioxide, as the standard nuclear fuel in pressurized water reactors, motivates intensive research to get further insight into the link between radiation damage and microstructure evolution of the material. Cerium dioxide is often considered as a non-radioactive model material for uranium dioxide, for which the experimental study of radiation damage could be performed more easily. Using first-principles calculations based on the density functional theory (DFT) and its DFT+U variant, we compare these two oxides in terms of point defect formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Killeen, J. C., J. Nucl. Mater. 88, 185 (1980).CrossRefGoogle Scholar
Wuilloud, E., Delley, B., Schneider, W.-D., and Baer, Y., Phys. Rev. Lett. 53, 202 (1984).CrossRefGoogle Scholar
Mullins, D. R., Overbury, S. H., and Huntley, D. R., Surf. Sci. 409, 307 (1998).CrossRefGoogle Scholar
Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J., Phys. Rev. B 70, 014113 (2004).CrossRefGoogle Scholar
Gerward, L., Olsen, J. S., Petit, L., Vaitheeswaran, G., Kanchana, V., and Svane, A., J. Alloys Compd. 400, 56 (2005).CrossRefGoogle Scholar
Fritz, I. J., J. Appl. Phys. 47, 4353 (1976).CrossRefGoogle Scholar
Nakajima, A., Yoshihara, A., and Ishigame, M., Phys. Rev. B 50, 13297 (1994).CrossRefGoogle Scholar
Wiktor, J., Vathonne, E., Freyss, M., Jomard, G., and Bertolus, M., Mater. Res. Soc. Symp. Proc. Vol. 1645 © 2014 Materials Research Society. (2014).CrossRefGoogle Scholar
Vathonne, E., Wiktor, J., Freyss, M., Jomard, G., and Bertolus, M., J. Phys. Condens. Matter 26, 325501 (2014).CrossRefGoogle Scholar
Skorodumova, N. V., Ahuja, R., Simak, S. I., Abrikosov, I. A., Johansson, B., and Lundqvist, B. I., Phys. Rev. B 64, 115108 (2001).CrossRefGoogle Scholar
Fabris, S., de Gironcoli, S., Baroni, S., Vicario, G., and Balducci, G., Phys. Rev. B 71, 041102 (2005).CrossRefGoogle Scholar
Loschen, C., Carrasco, J., Neyman, K. M., and Illas, F., Phys. Rev. B 75, 035115 (2007).CrossRefGoogle Scholar
Plata, J. J., Márquez, A. M., and Sanz, J. F., J. Chem. Phys. 136, 041101 (2012).CrossRefGoogle Scholar
Song, H. X., Liu, L., Geng, H. Y., and Wu, Q., Phys. Rev. B 87, 184103 (2013).CrossRefGoogle Scholar
Jiang, Y., Adams, J. B., van Schilfgaarde, M., Sharma, R., and Crozier, P. A., Appl. Phys. Lett. 87, 141917 (2005).CrossRefGoogle Scholar
Andersson, D. A., Simak, S. I., Johansson, B., Abrikosov, I. A., and Skorodumova, N. V., Phys. Rev. B 75, 035109 (2007).CrossRefGoogle Scholar
Castleton, C. W. M., Kullgren, J., and Hermansson, K., J. Chem. Phys. 127, 244704 (2007).CrossRefGoogle Scholar
Xiao, H. Y. and Weber, W. J., J. Phys. Chem. B 115, 6524 (2011).CrossRefGoogle Scholar
Zacherle, T., Schriever, A., De Souza, R. A., and Martin, M., Phys. Rev. B 87, 134104 (2013).CrossRefGoogle Scholar
Iwasawa, M., Ohnuma, T., Chen, Y., Kaneta, Y., Geng, H.-Y., Iwase, A., and Kinoshita, M., J. Nucl. Mater. 393, 321 (2009).CrossRefGoogle Scholar
Jerratsch, J.-F., Shao, X., Nilius, N., Freund, H.-J., Popa, C., Ganduglia-Pirovano, M. V., Burow, A. M., and Sauer, J., Phys. Rev. Lett. 106, 246801 (2011).CrossRefGoogle Scholar
Jarlborg, T., Barbiellini, B., Lane, C., Wang, Y. J., Markiewicz, R. S., Liu, Z., Hussain, Z., and Bansil, A., Phys. Rev. B 89, 165101 (2014).CrossRefGoogle Scholar
Murgida, G. E., Ferrari, V., Ganduglia-Pirovano, M. V., and Llois, A. M., Phys. Rev. B 90, 115120 (2014).CrossRefGoogle Scholar
Miao, Y., Chen, W.-Y., Oaks, A., Mo, K., and Stubbins, J. F., J. Nucl. Mater. 449, 242 (2014).CrossRefGoogle Scholar
Dorado, B., Amadon, B., Freyss, M., and Bertolus, M., Phys. Rev. B 79, 235125 (2009).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
Taylor, S. E. and Bruneval, F., Phys. Rev. B 84, 075155 (2011).CrossRefGoogle Scholar
Na-Phattalung, S., Smith, M. F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S. B., and Limpijumnong, S., Phys. Rev. B 73, 125205 (2006).CrossRefGoogle Scholar
Pukari, M., Olsson, P., and Sandberg, N., J. Nucl. Mater. 438, 7 (2013).CrossRefGoogle Scholar