Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:33:51.770Z Has data issue: false hasContentIssue false

First-principles investigations on the thermoelectric properties of Bi2Te3 doped with Se

Published online by Cambridge University Press:  13 August 2013

Liwen F. Wan
Affiliation:
Department of Material Science and Engineering, Iowa State University, Ames, IA 50010, U.S.A.
Scott P. Beckman
Affiliation:
Department of Material Science and Engineering, Iowa State University, Ames, IA 50010, U.S.A.
Get access

Abstract

In this work, the thermoelectric properties of Se-doped Bi2Te3 are examined using first-principles density functional theory and semi-classical Boltzmann transport theory. Placing a single Se atom on the 3a Wyckoff position lowers the unit cell energy by approximately 3.6 eV, compared to the 6c Te position. The electronic structure of Bi2Te3 has minor changes upon Se doping. At carrier concentration of 1019 cm-3, the optimal thermopower, S, is obtained as 207 and 220 μV/K for n-type and p-type doping, respectively. Unlike the thermopower, the power factor, S2σ/τ, is highly anisotropic for the in-plane and cross-plane conduction. At carrier concentrations of 1019 cm-3, the best power factor is predicted to be around 1.05 and 1.4×1011 W/m·s·K2 for n-type and p-type doping, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rosi, F. D., Solid-State Electron. 11, 833848 (1968).CrossRefGoogle Scholar
Rosi, F. D., Hockings, E. F. and Lindenblad, N. E., RCA Rev. 22, 82121 (1961).Google Scholar
Wood, C., Rep. Prog. Phys. 51, 459539 (1988).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008).CrossRefGoogle Scholar
Wright, D. A., Nature 181, 834 (1958).CrossRefGoogle Scholar
Wan, C., Wang, Y., Wang, N., Norimatsu, W., Kusunoki, M., and Koumoto, K., Sci. Technol. Adv. Mater. 11, 044306 (2010).CrossRefGoogle Scholar
Hashibon, A. and Elsässer, C., Phys. Rev. B 84, 144117 (2011).CrossRefGoogle Scholar
Termentzidis, K., Pokropyvnyy, O., Woda, M., Xiong, S., Chumakov, Y., Cortona, P. and Volz, S., J. Appl. Phys. 113, 013506 (2013).CrossRefGoogle Scholar
Qiu, B., Sun, L. and Ruan, X., Phys. Rev. B 83, 035312 (2011).CrossRefGoogle Scholar
Teweldebrhan, D., Goyal, V. and Balandin, A. A., Nano Lett. 10, 12091218 (2010).CrossRefGoogle Scholar
Venkatasubramanian, R., Phys. Rev. B 61, 30913097 (2000).CrossRefGoogle Scholar
Venkatasubramanian, R., Colpitts, T., O’Quinn, B., Liu, S., El-Masry, N. and Lamvik, M., Appl. Phys. Lett. 75, 1104 (1999).CrossRefGoogle Scholar
Venkatasubramanian, R., Silvola, E., Colpitts, T. and O’Quinn, B., Nature 413, 597602 (2001).CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140(A), 1133 (1965).CrossRefGoogle Scholar
Martin, R. M., Electronic Structure: Basis Theory and Practical Methods (Cambridge University Press, New York, 2004) p. 119.CrossRefGoogle Scholar
Ziman, J. M., Electrons and Phonons (Oxford University Press, New York, 2001) p. 257.CrossRefGoogle Scholar
Madsen, G. K. H. and Singh, D. J., Comput. Phys. Commun. 175, 6771 (2006).CrossRefGoogle Scholar
Singh, D. J. and Nordström, L., Planewaves, Pseudopotentials and the LAPW Method, 2nd ed. (Springer, New York, 2006) p. 43.Google Scholar
Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (K. Schwarz Technical University, Wien, Austria, 2001) p. 1.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Wyckoff, R. W. G., Crystal Structures (John Wiley and sons, New York, 1964) p. 10.Google Scholar
Wang, S., Tan, G., Xie, W., Zheng, G., Li, H., Yang, J. and Tang, X., J. Mater. Chem. 22, 20943 (2012).CrossRefGoogle Scholar
Hinsche, N. F., Yavorsky, B. Y., Gradhand, M., Czerner, M., Winkler, M., König, J., Böttner, H., Mertig, I. and Zahn, P., Phys. Rev. B 86, 085323 (2012).CrossRefGoogle Scholar