Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:47:56.063Z Has data issue: false hasContentIssue false

First principles study of electronic structures of dopants in Mg2Si

Published online by Cambridge University Press:  03 August 2011

K. Xiong*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
S. Sobhani
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
R. P. Gupta
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
W. Wang
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
B. E. Gnade
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Kyeongjae Cho*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA Physics Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
*
*Corresponding Author. Email: [email protected]
Corresponding Author. Email: kjcho @utdallas.edu
Get access

Abstract

We investigate the impact of various dopants (Na, Ag, Cd, Zn, Al, Ga, In, Tl, Ge, and Sn) on the electronic structure of Mg2Si by first principles calculations using a hybrid functional that does not need a band gap correction. We find that for Na and Ge in Mg2Si, the impurity-induced states do not affect the density of states at both edges of the valence band and the conduction band. Ag- and Sn affect slightly the density of states at the valence band edge, while Cd and Zn affect slightly the density of state at the conduction band edge. Al and In could modify significantly the density of states at the conduction band edge. Ga introduces states just at the bottom of the conduction band. Tl introduces states in the band gap. This study provides useful information on optimizing the thermoelectric efficiency of Mg2Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008).Google Scholar
2. Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R., and Ren, Z., Adv. Mater. 19, 1043 (2007).Google Scholar
3. Rowe, M., Thermoelectrics Handbook (CRC, Boca Raton, 2006).Google Scholar
4. Sakamoto, T., Iida, T., Matsumoto, A., Honda, Y., Nemoto, T., Sato, J., Nakajima, T., Taguchi, H., and Takanashi, Y., J. Electron. Mater. 39, 1708 (2010).Google Scholar
5. Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Yu., and Vedernikov, M. V., Phys. Rev. B 74, 045207 (2006).Google Scholar
6. Mars, K., Ihou-Mouko, H., Pont, G., Tobola, J., and Scherrer, H., J. Electron. Mater. 38, 1360 (2009).Google Scholar
7. Nolas, G., Wang, D., and Beekman, M., Phys. Rev. B 76, 235204 (2007).Google Scholar
8. Isoda, Y., Tada, S., Nagai, T., Fujiu, H., and Shinohara, Y., J. Electron. Mater. 39, 1531, (2010).Google Scholar
9. Tani, J., Takahashi, M., and Kido, H., J. Alloys Compd. 485, 764 (2009).Google Scholar
10. Tani, J. and Kido, H., Intermetallics 15, 1202 (2007).Google Scholar
11. Tani, J. and Kido, H., J. Alloys Compd. 466, 335 (2008).Google Scholar
12. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G. J., Science 321, 554 (2008).Google Scholar
13. Heyd, J., Scuseria, G. E., Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).Google Scholar
14. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
15. Anastassakis, E. and Hawranek, J. P., Phys. Rev. B 5, 4003 (1972).Google Scholar
16. Koenig, P. and Lynch, D. W., J. Phys. Chem. Sol. 20, 122 (1961).Google Scholar