Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T01:13:01.840Z Has data issue: false hasContentIssue false

Field-induced superconductivity in MoS2

Published online by Cambridge University Press:  04 June 2013

Y. J. Zhang
Affiliation:
Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
J. T. Ye
Affiliation:
Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Y. Iwasa
Affiliation:
Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan CERG, RIKEN, Hirosawa 2-1, Wako 351-0198, Japan
Get access

Abstract

We fabricated MoS2 transistor adopting electric double layer (EDL) as gate dielectric. So far, EDL has realized p-type conducting MoS2 in addition to well-known n-type conduction showing ambipolar operation. In our study, field-effect superconducting transition of MoS2 was realized with maximum TC around 10 K. This TC is the highest not only within MoS2 compounds but also among whole TMDs. The highest TC discovered in this study lies in the carrier density region much smaller than chemically investigated region. Such compounds with small doping level have never been successfully synthesized by chemical method. Furthermore, by combining HfO2 (typical high-k material for FETs) gating with EDL gating, continuous control of carrier density, and thus quantum phase, was demonstrated. As a result, we successfully obtained the phase diagram of MoS2. Interestingly, the TC exhibits strong carrier density dependence, showing dome-shaped superconducting phase. Superconducting dome in other materials than cuprates has been reported only a few times in doped 2D semiconductors. Since FET charge accumulation is basically two dimensional, our result implies the existence of common mechanism for superconducting dome in 2D band insulators.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., PNAS 102, 10451 (2005).CrossRefGoogle Scholar
Geim, A. K. and Novoselov, K. S., Nature Materials 6, 183 (2007).CrossRefGoogle Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S., Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
Allender, D., Bray, J., and Bardeen, J., Phys. Rev. B 7, 1020 (1973).CrossRefGoogle Scholar
Takada, Y., J. Phys. Soc. Jpn. 45, 786 (1978).CrossRefGoogle Scholar
Brazovskii, S., Kirova, N., and Yakovenko, V., Solid State Communications 55, 187 (1985).CrossRefGoogle Scholar
Glover‚, R. E. III and Sherrill, M. D., Phys. Rev. Lett. 5, 248 (1960).CrossRefGoogle Scholar
Ahn, C. H., Triscone, J. M., and Mannhart, J., Nature 424, 1015 (2003).CrossRefGoogle Scholar
Ahn, C. H., Bhattacharya, A., Di Ventra, M., Eckstein, J. N., Frisbie, C. D., Gershenson, M. E., Goldman, A. M., Inoue, I. H., Mannhart, J., Millis, A. J., Morpurgo, A. F., Natelson, D., and Triscone, J.-M., Rev. Mod. Phys. 78, 1185 (2006).CrossRefGoogle Scholar
Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., and Kawasaki, M., Nat. Mater. 7, 855 (2008).CrossRefGoogle Scholar
Caviglia, A. D., Gariglio, S., Reyren, N., Jaccard, D., Schneider, T., Gabay, M., Thiel, S., Hammerl, G., Mannhart, J., and Triscone, J.-M., Nature 456, 624 (2008).CrossRefGoogle Scholar
Ye, J. T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H. T., Shimotani, H., and Iwasa, Y., Nature Materials 9, 125 (2010).CrossRefGoogle Scholar
Ye, J. T., Zhang, Y. J., Akashi, R., Bahramy, M. S., Arita, R., and Iwasa, Y., Science 338, 1193 (2012).CrossRefGoogle Scholar
Ye, J. T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H. T., Shimotani, H., and Iwasa, Y., Physica C-Superconductivity and Its Applications 470, S682 (2010).CrossRefGoogle Scholar
Ye, J., Craciun, M. F., Koshino, M., Russo, S., Inoue, S., Yuan, H., Shimotani, H., Morpurgo, A. F., and Iwasa, Y., PNAS 108, 13002 (2011).CrossRefGoogle Scholar
Zhang, Y., Ye, J., Matsuhashi, Y., and Iwasa, Y., Nano Lett. 12, 1136 (2012).CrossRefGoogle Scholar
Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y., and Tokura, Y., Nat. Phys. 8, 729 (2012).CrossRefGoogle Scholar
Bao, W., Cai, X., Kim, D., Sridhara, K., and Fuhrer, M. S., Applied Physics Letters 102, 042104 (2013).CrossRefGoogle Scholar
Abrahams, E., Kravchenko, S. V., and Sarachik, M. P., Rev. Mod. Phys. 73, 251 (2001).CrossRefGoogle Scholar
Fivaz, R. and Mooser, E., Phys. Rev. 163, 743 (1967).CrossRefGoogle Scholar
Klein, T., Achatz, P., Kacmarcik, J., Marcenat, C., Gustafsson, F., Marcus, J., Bustarret, E., Pernot, J., Omnes, F., Sernelius, B. E., Persson, C., Ferreira da Silva, A., and Cytermann, C., Phys. Rev. B 75, 165313 (2007).CrossRefGoogle Scholar
Somoano, R. B., Hadek, V., and Rembaum, A., The Journal of Chemical Physics 58, 697 (1973).CrossRefGoogle Scholar
Woollam, J. A. and Somoano, R. B., Materials Science and Engineering 31, 289 (1977).CrossRefGoogle Scholar
Shanks, H. R., Solid State Communications 15, 753 (1974).CrossRefGoogle Scholar
Schooley, J. F., Hosler, W. R., Ambler, E., Becker, J. H., Cohen, M. L., and Koonce, C. S., Phys. Rev. Lett. 14, 305 (1965).CrossRefGoogle Scholar
Taguchi, Y., Kitora, A., and Iwasa, Y., Phys. Rev. Lett. 97, 107001 (2006).CrossRefGoogle Scholar