Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T10:46:50.805Z Has data issue: false hasContentIssue false

Field Dependent Electrical Conduction in Metal-Insulator-Metal Devices using Alumina-Silicone Nanolaminate Dielectrics

Published online by Cambridge University Press:  18 June 2013

Santosh K. Sahoo
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, USA New Jersey Institute of Technology, Newark, New Jersey 07102, USA
Rakhi P. Patel
Affiliation:
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Colin A. Wolden
Affiliation:
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Get access

Abstract

Hybrid alumina-silicone nanolaminate films were synthesized by plasma enhanced chemical vapor deposition (PECVD) process. PECVD allows digital control over nanolaminate construction, and may be performed at low temperature for compatibility with flexible substrates. These materials are being considered as dielectrics for application such as capacitors in thin film transistors and memory devices. In this work, we present the temperature dependent current versus voltage (I-V) measurements of the nanolaminate dielectrics in the range of 200- 310 K to better asses their potential in these applications. Various models are used to know the different conduction mechanisms contributing to the leakage current in these nanolaminate films. It is observed that space charge limited current (SCLC) mechanism is the dominant conduction process in the high field region whereas Ohmic conduction process is contributing to the leakage current in the low field region. The shallow electron trap level energy (Et) of 0.16 eV is responsible for SCLC mechanism whereas for Ohmic conduction process the activation energy (Ea) for electrons is about 0.22 eV. An energy band diagram is given to explain the dominance of various conduction mechanisms in different field regions in these nanolaminate films.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ortiz, R. P., Facchetti, A., and Marks, T. J., Chem. Rev. 110, 205 (2010).CrossRefGoogle Scholar
Choi, M. C., Kim, Y., and Ha, C. S., Prog. Polym. Sci. 33, 581 (2008).CrossRefGoogle Scholar
Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N. S., Latrèche, M., Czeremuszkin, G., and Wertheimer, M. R., Thin Solid Films 511512, 349 (2006).CrossRefGoogle Scholar
Deman, A. L., Erouel, M., Lallemand, D., Phaner-Goutorbe, M., Lang, P., and Tardy, J., J. Non-Cryst. Solids 354, 1598 (2008).CrossRefGoogle Scholar
Hwang, D. K., Choi, W., Choi, J.-M., Lee, K., Park, J. H., Kim, E., Kim, J. H. and Im, S., J. Electrochem. Soc. 154, H933 (2007).CrossRefGoogle Scholar
Hwang, D. K., Kim, C. S., Choi, J. M., Lee, K., Park, J. H., Kim, E., Baik, H. K., Kim, J. H., and Im, S., Adv. Mater. 18, 2299 (2006).CrossRefGoogle Scholar
Kukli, K., Ihanus, J., Ritala, M., and Leskelä, M., J. Electrochem. Soc. 144, 300 (1997).CrossRefGoogle Scholar
Kattelus, H., Ylilammi, M., Saarilahti, J., Antson, J. and Lindfors, S., Thin Solid Films 225, 296 (1993).CrossRefGoogle Scholar
Rowlette, P. C. and Wolden, C. A., Thin Solid Films 518, 3337 (2010).CrossRefGoogle Scholar
Choi, J.-M., Lee, K., Hwang, D. K., Park, J. H., Kim, E., and Im, S., Electrochem. Solid-State Lett. 9, G289 (2006).CrossRefGoogle Scholar
Seol, Y. G., Park, J. S., Tien, N. T., Lee, N. E., Lee, D. K., Lee, S. C., Kim, Y. J., Lee, C. S., and Kim, H., J. Electrochem. Soc. 157, H1046 (2010).CrossRefGoogle Scholar
Choi, K., Hwang, D. K., Lee, K., Kim, J. H., and Im, S., Electrochem. Solid State Lett. 10, H114 (2007).CrossRefGoogle Scholar
Sahoo, S. K., Misra, D., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 109, 064108 (2011).CrossRefGoogle Scholar
Sahoo, S. K., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., Appl. Phys. Lett. 85, 5001 (2004).CrossRefGoogle Scholar
Murphy, E. L. and Good, R. H. Jr., Phys, . Rev. 102, 1464 (1956).Google Scholar
Sahoo, S. K. and Misra, D., J. Appl. Phys. 110, 084104 (2011).CrossRefGoogle Scholar
Ding, S. -J., Xu, J., Huang, Y., Sun, Q. -Q., Zhang, D. W., and Li, M. -F., Appl. Phys. Lett. 93, 092909 (2008).CrossRefGoogle Scholar
Patel, R. P., Chiavetta, D., and Wolden, C. A., J. Vac. Sci. Technol. A 29, 061508–1 (2011).CrossRefGoogle Scholar
Patel, R. P. and Wolden, C. A., J. Vac. Sci. Technol. A 29, 021012 (2011).CrossRefGoogle Scholar
Sahoo, S. K., Patel, R. P., and Wolden, C. A., Appl. Phys. Lett. 101, 142903 (2012).CrossRefGoogle Scholar
Sze, S. M., Physics of Semiconductor Devices, 2 nd ed. (Wiley-Interscience, 1981).Google Scholar
Chang, I. Y. -K. and Lee, J. Y. -M., Appl. Phys. Lett. 93, 223503 (2008).CrossRefGoogle Scholar
Zhang, P., Chen, F., Liu, Y., and Lei, Q., Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 260 (2007).Google Scholar
Sahoo, S. K. and Misra, D., Appl. Phys. Lett. 100, 232903 (2012).CrossRefGoogle Scholar
Zhou, H., Dorman, J. A., Perng, Y. -C., Chang, J. P., and Liu, J., J. Appl. Phys. 111, 064505 (2012).CrossRefGoogle Scholar