Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:24:40.972Z Has data issue: false hasContentIssue false

Ferroelectricity of Chiral Compounds in Highly Ordered Smectic Phases

Published online by Cambridge University Press:  25 February 2011

Stanisław Wróbel
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Federal Republic of Germany
Matthias Pfeiffer
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Federal Republic of Germany
Ashók M. Biradar
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Federal Republic of Germany
Wolfgang Haase
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Federal Republic of Germany
Get access

Abstract

Measurements of the complex electric permitttivity for the Sm C* and for three highly ordered smectic phases: Sm I*, Sm J* and Sm K* of 4- (2 - methylbutyl)-phenyl-4′-(octyloxy)-(1,1′)-biphenyl-4-carboxylate (8 OSI) have been done in the frequency range from 5 Hz to 13 MHz. For the first three chiral phases the Goldstone mode was found with temperature independent critical frequencies, νc = 1.5kHz and the relaxation time τG = 106 μs - for the Sm C* phase, and νc = 1 kHz and τG - 160 μs - for the Sm I* one. In two highly ordered smectics, i.e. Sm J* and Sm K* with inter-layer correlations, the Goldstone mode seems to be suppressed. By applying a D.C. bias field of 1.4 kV/cm the Goldstone mode has been suppressed and shifted towards higher frequencies in both the Sm C* and Sm I* phase. For the Sm J* phase the Goldstone mode is very weak and practically insensitive to the bias field used. In the Sm K* phase there is no Goldstone mode like relaxation, and the only contribution to electric permittivity comes from the fast molecular motion connected with reorientation of molecules about their long axis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, R.B., Liebert, L., Strzelecki, L. and Keller, P., J. de Phys. Lett. 36, 69 (1975).Google Scholar
2. Gray, G.W. and Goodby, J.W., Smectic Liquid Crystals, Leonard and Hill, Glasgow and London 1984.Google Scholar
3. Kuczyński, W. and Stegemeyer, H., Ferroelectrics 5, 553 (1989).Google Scholar
4. Bone, M.F., Coates, D., Davey, A. B., Mol. Cryst. Liq. Cryst. 102, 331 (1984).CrossRefGoogle Scholar
5. Cava, R. J., Patel, J. S. and Rietman, E. A., J. Appl. Phys. 60, 3093 (1986).Google Scholar
6. Brok, D., Aharony, A., Birgeneau, R. J., Evans-Lutterodt, K., Litster, J. D., Horn, P.M., Stephenson, G. B. and Tajbakhsh, A. J., Phys. Rev. Lett. 57, 98 (1986).Google Scholar
7. Leadbetter, A. J., Gaughan, J. P., Kelly, B., Gray, G. W. and Goodby, J. W., J. Phys. (Paris), Colloq. 3, 40. p. C1 (1979).Google Scholar
8. Biradar, A. M., Wróbel, S. and Haase, W., Phys. Rev. A 39, 2693 (1989); Liquid Crystals 5, 1227 (1989).Google Scholar
9. Biradar, A. M., Wróbel, S. and Haase, W., Ferroelectrics (in print).Google Scholar
10. Wróbel, S., Biradar, A. M. and Haase, W., Ferroelectrics 100, ........ (1989).Google Scholar
11. Glogarowa, M., Fousek, J., Lejcek, L. and Pavel, J., Ferroelectrics 58, 161 (1984).Google Scholar