Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T03:39:33.775Z Has data issue: false hasContentIssue false

Fe-Centers in GaN as Candidates for Spintronics Applications

Published online by Cambridge University Press:  01 February 2011

Enno Malguth
Affiliation:
[email protected], University of Technology Sydney, Microstructural Analysis Unit, Level 1,, Building 4,, Thomas St,, Ultimo, NSW, 2007, Australia
Axel Hoffmann
Affiliation:
[email protected], Technische Universität Berlin, Institut für Festkörperphysik, Germany
Matthew Phillips
Affiliation:
[email protected], University of Technology, Sydney, Microstructural Analysis Unit, Australia
Wolfgang Gehlhoff
Affiliation:
[email protected], Technische Universität Berlin, Institut für Festkörperphysik
Get access

Abstract

The potential use of Fe doped GaN for spintronics applications requires a complete understanding of the electronic structure of Fe in all of its charge states. To address these issues, a set of 500 µm thick freestanding HVPE grown GaN:Fe crystals with different Fe-concentration levels ranging from 5×1017 to 2×1020 was studied by means of photoluminescence, photoluminescence excitation (PLE) and Fourier transform infrared (FTIR) transmission experiments. The Fe3+/2+ charge transfer (CT) level was determined to be at 2.86 ± 0.01 eV above the valence band maximum considerably lower than the previously reported value of 3.17 ± 0.10 eV. A bound state of the form (Fe2+, hVB) with a binding energy of 50 ± 10 meV has been established as an excited state of Fe3+. FTIR transmission measurements revealed an internal (5E-5T2) transition of Fe2+ around 400 eV which, until now, was believed to be degenerate with the conduction band. Consequently, a second CT band was detected in PLE spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pearton, S. J., Abernathy, C. R., Thaler, G. T., Frazier, R. M., Norton, D. P., Ren, F., Park, Y. D., Zavada, J. M., Buyanova, I. A., Chen, W. M. and Hebard, A. F., Journal of Physics: Condensed Matter page R209 (2004).Google Scholar
[2] Ohno, H., Science 281, 951 (1998).CrossRefGoogle Scholar
[3] Dietl, T., Ohno, H. and Matsukura, F., Physical Review B 63, 195205(2001).CrossRefGoogle Scholar
[4] Ham, F. S. and Slack, G. A., Physical Review B 4, 777 (1971).CrossRefGoogle Scholar
[5] Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).CrossRefGoogle Scholar
[6] Maier, K., Kunzer, M., Kaufmann, U., Schneider, J., Monemar, B., Akasaki, I. and Amano, H., Materials Science Forum 143–147, 93 (1994).Google Scholar
[7] Heitz, R., Thurian, P., Loa, I., Eckey, L., Hoffmann, A., Broser, I., Pressel, K., Meyer, B. K. and Mokhov, E. N., Applied Physics Letters 67, 2822 (1995).CrossRefGoogle Scholar
[8] Heitz, R., Maxim, P., Eckey, L., Thurian, P., Hoffmann, A., Broser, I., Pressel, K. and Meyer, B. K., Physical Review B 55, 4382 (1997).CrossRefGoogle Scholar
[9] Langer, J. M. and Heinrich, H., Phys. Rev. Lett. 55, 1414 (1985).CrossRefGoogle Scholar
[10] Langer, M. L. J. M., Delerue, C. and Heinrich, H., Physical Review B 38, 7723 (1988).CrossRefGoogle Scholar
[11] Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Schikora, D., Hankeln, M. and Lischka, K., Solid State Communications 96, 943 (1995).CrossRefGoogle Scholar
[12] Davydov, V. Y., Kitaev, Y. E., Goncharuk, I. N., Smirnov, A. N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P. and Evarestov, R. A., Physical Review B 58, 12899 (1998).CrossRefGoogle Scholar
[13] Thurian, P., Kaczmarczyk, G., Siegle, H., Heitz, R., Hoffmann, A., Broser, I., Meyer, B. K., Hoffbauer, R. and Scherz, U., Materials Science Forum 196–201, 1571 (1995).CrossRefGoogle Scholar
[14] Goebel, C., Schrepel, C., Scherz, U., Thurian, P., Kaczmarczyk, G. and Hoffmann, A., Materials Science Forum 258–263, 1173 (1997).CrossRefGoogle Scholar
[15] Podlowski, L., Heitz, R., Wolf, T., Hoffmann, A., Bimberg, D., Broser, I. and Ulrici, W., Materials Science Forum 143–147, 311 (1994).Google Scholar
[16] Pressel, K., Rückert, G., Dörnen, A. and Thonke, K., Phys. Rev. B 46, 13171 (1992).CrossRefGoogle Scholar
[17] Pressel, K., Dörnen, A., Rückert, G. and Thonke, K., Phys. Rev. B 47, 16267 (1993).CrossRefGoogle Scholar
[18] Hoffmann, A., Eckey, L., Maxim, P., Holst, J.-C., Heitz, R., Hofmann, D. M., Kovalev, D., Steude, G., Volm, D., Meyer, B. K., Detchprohm, T., Amano, H. and Akasaki, I., Solid State Electronics 41, 275 (1997).CrossRefGoogle Scholar
[19] Podlowski, L., Heitz, R., Thurian, P., Hoffmann, A. and Broser, I., Journal of Luminescence 48, 252 (1994).CrossRefGoogle Scholar