Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T01:28:10.117Z Has data issue: false hasContentIssue false

Facile One-Pot Synthesis of Rhenium Nanoparticles

Published online by Cambridge University Press:  23 September 2014

Tuğçe Ayvalı
Affiliation:
CNRS ; LCC (Laboratoire de Chimie de Coordination) ; 205 Route de Narbonne ; F-31077 Toulouse (France) and UPS (Université de Toulouse), INPT, LCC ; F-31077 Toulouse (France)
Pierre Lecante
Affiliation:
CNRS UPR 8011; CEMES (Centre d’Elaboration des Matériaux et d’Etudes Structurales) 29 Rue Jeanne Marvig, 31055 Toulouse (France)
Pier-Francesco Fazzini
Affiliation:
LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) ; UMR 5215 INSA-CNRS-UPS, Institut des Sciences Appliquées, 135 Avenue de Rangueil, F-31077 Toulouse (France)
Angélique Gillet
Affiliation:
LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) ; UMR 5215 INSA-CNRS-UPS, Institut des Sciences Appliquées, 135 Avenue de Rangueil, F-31077 Toulouse (France)
Karine Philippot
Affiliation:
CNRS ; LCC (Laboratoire de Chimie de Coordination) ; 205 Route de Narbonne ; F-31077 Toulouse (France) and UPS (Université de Toulouse), INPT, LCC ; F-31077 Toulouse (France)
Bruno Chaudret
Affiliation:
LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) ; UMR 5215 INSA-CNRS-UPS, Institut des Sciences Appliquées, 135 Avenue de Rangueil, F-31077 Toulouse (France)
Get access

Abstract

This paper describes the organometallic synthesis of pure rhenium nanoparticles (Re NPs) and their characterization by a combination of state-of-the art techniques (TEM, HAADF-STEM, EDX, WAXS, EA, FT-IR). The Re NPs synthesis is achieved by reducing the [Re2(C3H5)4] complex in solution under a dihydrogen atmosphere and in the presence of hexadecylamine or polyvinylpyrrolidone as stabilizing agents. The so-obtained Re NPs are monodisperse with a mean size of 1.1 nm (0.3) nm and display a spherical shape with a disordered hcp structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Philippot, K. and Serp, P., Nanomaterials in Catalysis (Eds.), Wiley-VCH, Weinheim, 2013, 1.Google Scholar
a) Ensafi, A. A., Karrimi-Maleh, H., Ghiaci, M., Arshadi, M., J. Mater. Chem., 2011, 21, 1502215030; b) D. H. Lee, J. A. Lee, W. J. Lee, D. S. Choi, W. J. Lee, S. O. Kim, J. Phys. Chem. C, 2010, 114, 21184–21189.CrossRefGoogle Scholar
Kessler, V. G., Seisenbaeva, G. A., Minerals, 2012, 2, 244257.CrossRefGoogle Scholar
Mucalo, M. R., Bullen, C. R., J. Colloid Interface Sci., 2001, 239, 7177.CrossRefGoogle Scholar
a) Babu, K. M., Mucalo, M. R., J. Mater. Sci. Lett., 2003, 22, 17551757; b) A. A. Revina, M. A. Kuznetsov, A. M. Chekmarev, Dokl. Akad. Nauk, 2013, 450, 47–49.CrossRefGoogle Scholar
a) Yang, N., Mickelson, G. E., Greenlay, N., Kelly, S. D., Vila, F. D., Kas, J., Rehr, J. J., Bare, S. R., AIP Conf. Proc., 2007, 882, 591; b) U. G. Hong, H. W. Park, J. Lee, S. Hwang, J. Yi, I. K. Song, Appl. Catal. A, 2012, 415, 141–148; c) S. R. Bare, S. D. Kelly, F. D. Vila, E. Boldingh, E. Karapetrova, J. Kas, G. E. Mickelson, F. S. Modica, N. Yang, J. J. Rehr, J. Phys. Chem. C, 2011, 115, 5740–5755.CrossRefGoogle Scholar
a) Vollmer, C., Redel, E., Abu-Shandi, K., Thomann, R., Manyar, H., Hardacre, C., Janiak, C., Chem.- Eur. J., 2010, 16, 38493858; b) Y. Y. Chong, W. Y. Chow, W. Y. Fan, J. Colloid Interface Sci., 2012, 369, 164–169.CrossRefGoogle Scholar
Yurkov, G. Y., Kozinkin, A. V., Koksharov, Y. A., Fionov, A. S., Taratanov, N. A., Vlasenko, V. G., Pirog, I. V., Shishilov, O. N., Popkov, O. V., Composites: Part B, 2012, 43, 31923197.CrossRefGoogle Scholar
Valenzuela, C. D., Valenzuela, M. L., Caceres, S., O’Dwyer, C., J. Mater. Chem. A., 2013, 1, 15661572.CrossRefGoogle Scholar
a) Yi, J., Miller, J. T., Zemlyanov, D. Y., Zhang, R., Dietrich, P. J., Ribeiro, F. H., Suslov, S., Abu-Omar, M. M., Angew. Chem. Int. Ed., 2013, 52, 15; b) N. I. Buryak, O. G. Yanko, S. V. Volkov, Ukr. Khim. Zh., 2013, 79, 79–82.Google Scholar
Amiens, C., Chaudret, B., Ciuculescu-Pradines, D., Colliére, V., Fajerwerg, K., Fau, P., Kahn, M., Maisonnat, A., Soulantica, K., Philippot, K., New J. Chem., 2013, 37, 33743401.CrossRefGoogle Scholar
Ayvalı, T., Lecante, P., Fazzini, P-F., Gillet, A., Philippot, K., Chaudret, B., Chem Commun., 2014, 50, 1080910811.CrossRefGoogle Scholar
Masters, A. F., Mertis, K., Gibson, J. F., Wilkinson, G., New. J. Chem., 1977, 1, 389395.Google Scholar
a) Pan, C., Pelzer, K., Philippot, K., Chaudret, B., Dassenoy, F., Lecante, P., Casanove, M-J., J. Am. Chem. Soc., 2001, 123, 75847593; b) E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A. M. Masdeu-Bulto, B. Chaudret, J. Organomet. Chem., 2004, 689, 4601–4610; c) E. Ramirez, L. Eradés, K. Philippot, P. Lecante, B. Chaudret, Adv. Func. Mater., 2007, 17, 2219–2228.CrossRefGoogle Scholar
Novio, F., Philippot, K., Chaudret, B., Catal. Lett., 2010, 140, 17.CrossRefGoogle Scholar
Baudry, D., Ephritikhine, M., J. Chem. Soc., Chem. Comm., 1980, 6, 249250.CrossRefGoogle Scholar