Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:33:46.803Z Has data issue: false hasContentIssue false

Fabrication of Electrically Active Si-based Thin Films by Pulsed Laser Deposition of SiO/C Dual Targets

Published online by Cambridge University Press:  01 February 2011

Yusaburo Ono
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yushi Kato
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yasuyuki Akita
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Makoto Hosaka
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Naoki Shiraishi
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Makoto Yamaguchi
Affiliation:
[email protected], OSAKA Titanium technologies Co., Ltd., Amagasaki, Japan
Osami Sakata
Affiliation:
[email protected], Japan Synchrotron Radiation Research Institute/ SPring-8, Sayo-gun, Japan
Mamoru Yoshimoto
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Get access

Abstract

We investigated the fabrication of Si nanocrystals, including thin films, by annealing the SiO/C/SiO thin films in an Ar atmosphere. The SiO/C/SiO trilayered thin films were deposited on α-Al2O3 (0001), Si (111), or ITO-coated borosilicate glass substrates at room temperature by pulsed laser deposition using dual sintered SiO and graphite targets. The SiO/C/SiO thin films subjected to heat treatment at 500°C included nanocrystalline Si. Measurements by synchrotron radiation X-ray diffraction indicated the formation of Si nanocrystals having a size of 5–10 nm. Fourier transform infrared spectra showed that Si–O stretching and vibrational peak intensities of the as-deposited thin film decreased remarkably after annealing. The C layer in the SiO/C/SiO trilayered thin films is considered to play a role in enhancing the chemical reaction that produces Si nanocrystals through reduction of SiO during heat treatment. The annealed SiO/C-based thin films, including Si nanocrystals, exhibited photosensitive conduction behavior in current–voltage measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishizawa, J., Kurabayashi, T., Kanamoto, K., Yoshida, T., and Oizumi, T., Mater. Sci. Semicond. Process 6, 363 (2003).Google Scholar
2. Javadi, H.H.S., McGrath, W.R., Bumble, B., and LeDuc, H.G., Appl. Phys. Lett. 61, 2712 (1992).Google Scholar
3. Bierhals, A., Aberle, A.G., and Hezel, R., J. Appl. Phys. 83, 1371 (1998).Google Scholar
4. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizawa, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
5. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
6. Shimizu-Iwayama, T., Kurumado, N., Hole, D.E., and Townsend, P.D., J. Appl. Phys. 83, 6018 (1998).Google Scholar
7. Song, H.Z. and Bao, X.M., Phys. Rev. B 55, 6988 (1997).Google Scholar
8. Seifarth, H., Grötzschel, R., Markwitz, A., Matz, W., Nitzsche, P., and Rebohle, L., Thin Solid Film 330, 202 (1998).Google Scholar
9. Kanzawa, Y., Kageyama, T., Takeoka, S., Fujii, M., Hayashi, S., and Yamamoto, K., Solid State Commun. 102, 533 (1997).Google Scholar
10. Makino, T., Yamada, Y., Suzuki, N., Yoshida, T., and Onari, S., J. Appl. Phys. 90, 5075 (2001).Google Scholar
11. Kabashin, A.V., Meunier, M., and Leonelli, R., J. Vac. Sci. Technol. B 19, 2217 (2001).Google Scholar
12. Patrone, L., Nelson, D., Safarov, V.I., Sentis, M., Marine, W., and Giorgio, S., J. Appl. Phys. 87, 3829 (2000).Google Scholar
13. Fang, Y.C., Li, W.Q., Qi, L.J., Li, L.Y., Zhao, Y.Y., Zhang, Z.J., and Lu, M., Nanotechnology 15, 494 (2004).Google Scholar
14. Nasheva, D., Bineva, I., Levi, Z., Aneva, Z., Merdzhanova, Ts., and Pivin, J.C., Vacuum 68, 1 (2003).Google Scholar
15. Zignani, F., Desalvo, A., Centurioni, E., Iencinella, D., Rizzoli, R., Summonte, C., and Migliori, A., Thin Solid Films 350, 451452 (2004).Google Scholar
16. Kurokawa, Y., Miyajima, S., Yamada, Y., and Konagai, M., Jpn. J. Appl. Phys. L1064, 45 (2006).Google Scholar
17. Kurokawa, Y., Tomita, S., Miyajima, S., Yamada, Y., and Konagai, M., Jpn. J. Appl. Phys. L833, 46 (2007).Google Scholar
18. Kundu, A.L., Prasad, S.C., Prakash, H.S., and Prasad, M., Trans. Indian Inst. Met. 57 (2), 2004, 109121 (2004).Google Scholar
19. Hutagalung, S. D., Yaacob, K. A., and Abdul Aziz, A. F., Applied Surface Science 254, 633637 (2007).Google Scholar
20. Rao, C. N. R., Gundiah, G., Deepak, F. L., Govindaraj, A., and Cheetham, A. K., J. Mater. Chem. 14, 440450 (2004).Google Scholar
21. Yoshimoto, M., Yoshida, K., Maruta, H., Hishitani, Y., Koinuma, H., Nishio, S., Kakihana, M., Tachibana, T., Nature 399, 340342 (1999).Google Scholar
22. Nakajima, K., Furusawa, M., Yamamoto, T., Tashiro, J., Sasaki, A., Chikyow, T., Ahmet, P., Yamada, H., Yoshimoto, M., Diamond and Related Materials 11, 953956 (2002).Google Scholar
23. Cullity, D., Elements of X-ray Diffraction 2nd ed. (Addison Wesley Pub. Co., Mass., 1978) p. 84.Google Scholar
24. Banerjee, C., Sritharathikhun, J., Yamada, A., and Konagai, M., J. Phy. D: Apl. Phys. 41 185107 (5 pp) (2008).Google Scholar