Published online by Cambridge University Press: 26 February 2011
The objective of this study is to develop a metal-matrix composite based on the intermetallic alloy Ni3Al reinforced with Al2O3 fibers, with improved high-temperature strength and lower density compared to the matrix material. This paper summarizes results of initial fabrication and mechanical tests on specimens produced using IC-15 [Ni-24% Al-0.24% B (at.%)] and IC-218 [Ni-16.5% Al-8% Cr-0.4% Zr-0.1% B (at.%)], with 20 vol. % Al2O3 fibers. Fabrication methods include both hot-pressing and hot-extrusion. Mechanical tests include four-point bending and tensile tests. The integrity of the fiber-matrix interface was studied and correlated with mechanical properties. Tensile ductilities of approximately 10% at room temperature were achieved for Ni3Al/Al2O3 composites with controlled material processing and interfacial structure. Fabrication of composites by hot-extrusion produced better tensile properties at room temperature, but superplastic behavior (i.e., low strengths, high ductilities) at 1000°C.