Article contents
Fabrication and characterization of tunable magnetic nanocomposite materials
Published online by Cambridge University Press: 11 February 2011
Abstract
Ferromagnetic nanocomposites in which magnetic nanoparticles are embedded into a polymeric matrix can replace conventional ferrites in the near future in applications such as: filters, high frequency inductors, chokes, sensors, core-shape and planar transformers, hybrid circuits and transponders. These dense magneto-dielectrics will provide a new approach in the fabrication of soft magnetic materials. In a magnetic/polymeric nanocomposite solid, the resistivity can be drastically increased, leading to significantly reduced eddy-current losses. In addition, the coupling between neighbouring magnetic nanoparticles results in much better soft magnetic properties at high frequencies than those of conventional bulk materials or ferrites. In order to study the influence of dipolar interactions between ferritic nanoparticles, samples of varying ferritic density were prepared. A polymeric binder (pre-swollen in toluene) was added to the nanoparticles, which were then cold-pressed using a standard compaction method. Characterization of the materials was carried out by means of x-ray diffractometry, electron microscopy, magnetometry, and high-frequency complex permeability measurements. Initial results show that tunable static and dynamic magnetic properties of the nanocomposite materials may be achievable.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 3
- Cited by