No CrossRef data available.
Published online by Cambridge University Press: 03 September 2012
GaN-based metal-ferroelectric-semiconductor (MFS) structure has been fabricated by using ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) instead of conventional oxides as gate insulators. The GaN and PZT films in the MFS structures have been characterized by various methods such as photoluminescence (PL), wide-angle X-ray diffraction (XRD) and high-resolution X-ray diffraction (HRXRD). The Electric properties of GaN MFS structure with different oxide thickness have been characterized by high-frequency C-V measurement. When the PZT films are as thick as 1 µm, the GaN active layers can approach inversion under the bias of 15V, which can not be observed in the traditional GaN MOS structures. When the PZT films are about 100 nm, the MFS structures can approach inversion just under 5V. All the marked improvements of C-V behaviors in GaN MFS structures are mainly attributed to the high dielectric constant and large polarization of the ferroelectric gate oxide.