Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:16:31.356Z Has data issue: false hasContentIssue false

Extension of the Modified Associate Species Thermochemical Model for High-Level Nuclear Waste: Inclusion of Chromia

Published online by Cambridge University Press:  11 February 2011

Theodore M. Besmann
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, USA
Karl E. Spear
Affiliation:
Materials Science and Engineering Department, Pennsylvania State University, University Park, PA 16802
John D. Vienna
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352
Get access

Abstract

The successful thermochemical model based on the modified associate species approach for the Na2O-Al2O3-B2O3-SiO2 base glass system has been extended to include a critical constituent, Cr2O3. This includes the Cr2O3-Al2O3 solid solution. For the liquid, and potentially glass phase when undercooling is allowed to occur, the model uses the relative simple, modified associate species method to allow accurate determination of phase relations, including liquidus surfaces. It also allows prediction of chemical activities and vapor pressures, which can be important in both processing and in modeling long-term waste form stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perez, J. M. Jr, Bickford, D. F., Day, D. E., Kim, D.-S., Lambert, S. L., Marra, S. L., Peeler, D. K., Strachan, D. M., Triplett, M. B., Vienna, J. D., and Wittman, R. S., High-Level Waste Melter Study Report, PNNL-13582; EW4010000, U. S. Department of Energy, July, 2001.Google Scholar
2. Spear, K. E., Besmann, T. M., and Beahm, E. C., MRS Bulletin 24, 37 (1999).Google Scholar
3. Besmann, T. M. and Spear, K. E., J. Am. Ceram. Soc. 85, 2887 (2002).Google Scholar
4. Bunting, E. N., J. Res. Natl. Bur. Stand. (U. S.), 5, 325 (1930).Google Scholar
5. Keith, M. L., J. Am. Ceram. Soc. 37, 490 (1954).Google Scholar
6. Bunting, E. N., J. Res. Natl. Bur. Stand. (U. S.), 6, 947(1931).Google Scholar
7. Sitte, W., Mater. Sci. Monogr. 28A [Reactive Solids, Part A] 451 (1985).Google Scholar
8. SGTE Pure Substance Database, 1996 Version, Scientific Group Thermodata Europe.Google Scholar
9. Eriksson, G. and Hack, K., Metall. Trans. B 21 1013 (1990).Google Scholar
10. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A.D., Petersen, S., CALPHAD 26 189 (2002).Google Scholar
11. Hillert, M., Phase Equilibria, Phase Diagrams, and Phase Transformations (Cambridge University Press, New York, 1998) p. 462.Google Scholar