Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T17:34:49.487Z Has data issue: false hasContentIssue false

Explosive Crystallization of Amorphous Germanium Films

Published online by Cambridge University Press:  15 February 2011

H. J. Leamy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
W. L. Brown
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
G. Foti
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
G. H. Gilmer
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
J. C. C. Fan
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Get access

Abstract

Laser processing of amorphous thin films of amorphous Ge often results in an explosive or self-sustaining crystallization reaction. The reaction is sustained by the heat liberated during crystallization. In a theoretical analysis of the process that was presented at this symposium last year, Gilmer and Leamy postulated the existence of a thin layer of liquid at the propagating interface. The liquid layer forms at temperatures above Ta, the melting point of amorphous Ge, and is predicted to be ~ 0.02 – 0.1 of the film thickness in width. We have obtained experimental confirmation of the presence of this liquid layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gore, G., Phil. Mag. 9, 73 (1855).CrossRefGoogle Scholar
[2] Muhrmann, H., Z. fur Physik, 54, 741 (1929).Google Scholar
[3] Lotmar, W., Helv. phys. Acta 18, 369 (1945).Google Scholar
[4] Goetzberger, A., fur Physik, Z., 142, 182 (1955).Google Scholar
[5] Takamori, T., Messier, R. and Roy, R., Allp. Phys. Lett. 20, 201 (1972).Google Scholar
[6] Takamori, T., Messier, R. and Roy, R., J. Materials Science 8, 1809 (1973).Google Scholar
[7] Mineo, A., Matsuda, A., Kurosu, T. and Kikuchi, M., Solid State Comm. 13, 329 (1973).Google Scholar
[8] Matsuda, A., Mineo, A., Kurosu, T. and Kikuchi, M., Solid State Comm. 13, 1165 (1973).Google Scholar
[9] Messier, R., Takamori, T. and Roy, R., Solid State Comm. 16, 311 (1974).Google Scholar
[10] Kikuchi, M., Matsuda, A., Kurosu, T., Mineo, A. and Calanan, M. J., Solid State Comm. 14, 731 (1974).Google Scholar
[11] Wickersham, C. E., Bajor, G. and Greene, J. E., Solid State Comm. 27, 17 (1978).Google Scholar
[12] Fan, J. C. C., Zeiger, H. J., Gale, R. P. and Chapman, R. L., Appl. Phys. Lett. 36, 158 (1980).Google Scholar
[13] Gold, R. B., Gibbons, J. F., Magee, T. J., Peng, J., Ormond, R., Deline, V. R. and Evans, C. J. Jr., in: Laser and Electron Beam Processing of Materials editors: White, C. W. and Peercy, P. S. (Academic Press, New York 1980) pp. 221226.CrossRefGoogle Scholar
[14] Gilmer, G. H. and Leamy, H. J., in: Laser and Electron Beam Processing of Materials editors: White, C. W. and Peercy, P. S. (Academic Press, New York 1980) pp. 227233.CrossRefGoogle Scholar
[15] Zeiger, H. J., Fan, J. C. C., Palm, B. J., Gale, R. P. and Chapman, R. L., in: Laser and Electron Beam Processing of Materials editors: White, C. W. and Peercy, P. S. (Academic Press, New York 1980) pp. 234240.CrossRefGoogle Scholar
[16] Chapman, R. L., Fan, J. C. C., Zeiger, H. J. and Gale, R. P., Appl. Phys. Lett. in press.Google Scholar
[17] In the notation of ref. 15, Ts=Tb and Ts*=Tr.Google Scholar
[18] Csepregi, L., Kullen, R. P., Mayer, J. W. and Sigmon, T. W., Solid State Comm. 21, 1019 (1977).Google Scholar
[19] Bagley, B. G. and Chen, H. S., A. I. P. Conf. Proc. 50, 97 (1979).CrossRefGoogle Scholar
[20] Spapen, F. and Turnbull, D., A. I. P. Conf. Proc. 50 pp.73.Google Scholar
[21] The possibility that grain boundary diffusion is responsible for the profile broadening in Fig. 3 may be eliminated by considering the grain boundary density evident in Fig. 3.Google Scholar
[22] Leamy, H. J., Bean, J. C., Poate, I. M. and Celler, G. K., J. Cryst. Growth 48, 379 (1980).Google Scholar
[23] White, C. W., Wilson, S. R., Appleton, B. R. and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
[24] Baeri, P., Campisano, S. U., Grimaldi, M. G. and Rimini, E., in ref. 13, pp. 130136.Google Scholar
[25] Campisano, S. U., Grimaldi, M. G., Baeri, P., Foti, G. and Rimini, E., Appl. Phys. 22, 201 (1980).Google Scholar
[26] see, e.g., Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).Google Scholar
[27] Bean, J. C., Leamy, H. J., Poate, J. M., Rozgonyi, G. A., Sheng, T. T., Williams, J. S. and Celler, G. K., Appl. Phys. Lett. 33, 227 (1978).Google Scholar
[28] Leamy, H. J., Rozgonyi, G. A., Sheng, T. T. and Celler, G. K. in: Laser and Electron Beam Processing of Electronic Materials editors: Anderson, C. L., Celler, G. K. and Rozgonyi, G. A. (The Electrochem. Soc., Princeton NJ 1980) pp. 333343.Google Scholar