Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T01:18:04.987Z Has data issue: false hasContentIssue false

Experimental and Ab-initio Investigations of Osmium Diboride

Published online by Cambridge University Press:  01 February 2011

M. M. Hebbache
Affiliation:
[email protected], Universite Paris 7, Materiaux et Phenomenes Quantiques (UMR 7162), 2 Place Jussieu, Paris Cedex 05, N/A, F-75251, France
L. Stuparevic
Affiliation:
[email protected], University of Belgrade, Department of Metallurgy, VJ12, Bor, 19210, Yugoslavia
D. Zivkovic
Affiliation:
[email protected], University of Belgrade, Department of Metallurgy, VJ12, Bor, 19210, Yugoslavia
M. Zemzemi
Affiliation:
[email protected], Universite Paris 7, Materiaux et Phenomenes Quantiques (UMR 7162), 2 Place Jussieu, Paris Cedex 05, F-75221, France
Get access

Abstract

More than half a century after their discovery, almost nothing is known about the physical properties of osmium borides, thought their structures have been clearly identified in the early sixties. We re-examined the phase diagram of the binary system osmium-boron and confirm the existence of two hexagonal phases, OsB1.1, Os2B3 and an orthorhombic phase, OsB2. Our microhardness measurements show that the synthesized OsB2 is extremely hard. In addition, first-principles calculations have been conducted to investigate its physical properties. It is shown that OsB2 is also a low compressibility material. Most of the transition metal borides have already found applications as in protective armor, nuclear reactors, reinforcement, etc. OsB2 can be used in applications like hard coating.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cynn, H., Klepeis, J. E., Yoo, C. S., Young, D. A., Phys. Rev. Lett. 88, 135701–4 (2002).Google Scholar
[2] Occelli, F., Farber, D. L., Badro, J., Aracne, C. M., David, D. M. and Hanfland, M., Phy. Rev. Lett. 93, 095502 (2004).Google Scholar
[3] Hebbache, M. and Zemzemi, M., Phys. Rev. B 70, 224107–6 (2004).Google Scholar
[4] Holleck, H., J. Vac. Sci. Technol. A 4, 26612669 (1986).Google Scholar
[5] Kempter, C. P., J. Chem. Phys. 41, 15151516 (1964).Google Scholar
[6] Buddery, J. H. and Welch, A. J. E., Nature 167, 362–362 (1951).Google Scholar
[7] Aronsson, B., Stenberg, E. and Aselius, J., Nature 195, 377378 (1962); Aronsson B., Acta Chem. Scand. 17, 2036 (1963).Google Scholar
[8] Roof, R. B. Jr., and Kempter, C. P., J. Chem. Phys. 37, 14731476 (1962).Google Scholar
[9] Stuparevič, L. and Živkovič, D., J. Therm. Analys. Calor. 76, 975983 (2004).Google Scholar
[10] Willis, J. R., J. Mech. Phys. Solids 14, 163176 (1966).Google Scholar
[11] Kaner, R. B. Gilman, J. J. and Tolbert, S. H., Science 308, 12681269 (2005); J. Am. Chem. Soc. 127, 7264 (2005).Google Scholar
[12] Kohn, W. and Sham, L. J., Phys. Rev. 140, A11331138 (1965)Google Scholar
[13] Blaha, P., Schwarz, S., Madsen, G. K. H., Kvasnicka, D. and Luitz, J. Computer Code WIEN2k (Vienna University of Technology, Vienna, 2001).Google Scholar
[14] Bockstedte, M., Kley, A., Neugebauer, J. and Scheffler, M., Comput. Phys. Commun. 107, 187222 (1997).Google Scholar
[15] Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
[16] Bachelet, G. B., Hamann, D. R. and Schluter, M., Phys. Rev. B 26, 41994228 (1982).Google Scholar
[17] Kleinman, L. & Bylander, D. M., Phys. Rev. Lett. 48, 14251428 (1982).Google Scholar
[18] Monkhorst, H. J. & Pack, J. D., Phys. Rev. B 13, 51885192 (1976).Google Scholar
[19] Vanderbilt, D., Taole, S. H. and Narasimhan, S., Phys. Rev. B 40, 56575668 (1989).Google Scholar
[20] Teter, D. M., Mater. Res. Soc. Bull. 23, 2227 (1998).Google Scholar
[21] Fuchs, K. A., Proc. Roy. Soc. A 153, 622639 (1936).Google Scholar
[22] Hebbache, M. Solid State Commun. 113, 427432 (2000).Google Scholar
[23] Grimsditch, M., Zouboulis, E. S. and Polain, A., J. Appl. Phys. 76, 832834 (1994).Google Scholar
[24] Grimsditch, M. and Ramdas, A. K., Phys. Rev. B 11, 31393148 (1975).Google Scholar
[25] Shackelford, J. F. and Alexander, W. CRC Materials Science and Engineering Handbook (Third ed., CRC Press, USA, 2006)Google Scholar