Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T18:58:16.886Z Has data issue: false hasContentIssue false

Excitation and Recombination Processes in rare Earth Doped II–VI Semiconductors

Published online by Cambridge University Press:  10 February 2011

M. Godlewski*
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Al. Lotników 32/46, Poland, [email protected]
Get access

Abstract

Rare Earth (RE) doped II–VI semiconductors are currently used for production of thin film light emitting electroluminescence devices. The excitation and recombination processes in RE activated wide band gap II–VI semiconductors (ZnS, ZnSe, SrS and CaS) are reviewed. Mechanisms relevant for obtaining bright photoluminescence (energy transfer processes, RE ionisation and exciton binding), electroluminescence (impact excitation and impact ionisation) and cathodoluminescence are described based on the recent experimental results. Efficiency of the light emission from RE doped II–VI materials is limited by several processes of nonradiative recombination. The Auger-type energy transfer processes and electric field- or thermally-activated processes responsible for 4f-4f nonradiative recombination of RE ions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Destriau, G., J. de Chimie Physique 33, 587 (1936).Google Scholar
2. Inoguchi, T., Takeda, M., Kahikara, Y., Nakata, Y. and Yoshida, M., Society for Information Display Intern. Symp. Dig. 1974, p. 86.Google Scholar
3. Godlewski, M. and Leskelä, M., Critical Reviews in Solid State and Materials Science 19, 199 (1994).Google Scholar
4. Schaffer, J. and Williams, F., Phys. Status Solidi 38, 657 (1970).Google Scholar
5. Dexter, D.L., J. Chem. Phys. 21, 836 (1953).Google Scholar
6. Anderson, W.W., Razi, S. and Walsh, D.J., J. Chem. Phys. 43, 1153 (1965).Google Scholar
7. Brown, M.R., Cox, A.F.J., Shand, W.A. and Williams, J.M., Adv. in Quantum Electronics 2, 69 (1974).Google Scholar
8. Boyn, R., Phys. Status Solidi (b) 148, 11 (1988).Google Scholar
9. Hommel, D., Busse, W., Gumlich, H. -E., Suisky, D., Röseler, J., Świątek, K. and Godlewski, M., J. Cryst. Growth 101, 393 (1990).Google Scholar
10. Kobayashi, H., Tanaka, S., Sasakura, H. and Hamakawa, Y., Jpn. J. Appl. Phys. 13, 1110 (1974).Google Scholar
11. Krupka, D.C., J. Appl. Phys. 43, 476 (1972).Google Scholar
12. Allen, J.W., in Electroluminescence, Springer Proc. in Physics 38, eds. Shionoya, S. and Kobayashi, H. (Springer, Berlin, 1989), p. 10 Google Scholar
13. Allen, J.W., J. Luminescence 48/49, 18 (1991).Google Scholar
14. Krupka, D.C. and Rochkind, M.M., J. Appl. Phys. 43, 194 (1972).Google Scholar
15. Krupka, D.C. and Mahoney, D.M., J. Appl. Phys. 43, 2314 (1972).Google Scholar
16. Okamoto, K., Yoshimi, T. and Miura, S., in Electroluminescence, Springer Proc. in Physics, vol. 38, eds. Shionoya, S. and Kobayashi, H. (Springer, Berlin, 1989), p. 139 Google Scholar
17. Ogura, T., Mikami, A., Tanaka, K., Taniguchi, K., Yoshida, M. and Nakajima, S., Appl. Phys. Lett. 48, 1570 (1986).Google Scholar
18. Charreire, Y., Marbeuf, A., Tourillon, G., Leskelä, M., Niinistö, L., Nykänen, E., Soininen, P. and Tolonen, O., J. Electrochem. Soc. 139, 619 (1992).Google Scholar
19. Gordon, N.T. and Allen, J.W., Solid State Commun. 37, 1441 (1981).Google Scholar
20. Suchocki, A. and Langer, J.M., Phys. Rev. B 39, 7905 (1989).Google Scholar
21. Langer, J.M., Suchocki, A., Hong, Le Van, Ciepielewski, P. and Walukiewicz, W., Physica B 117/118, 152 (1983).Google Scholar
22. Langer, J.M. and Hong, Le Van, J. Phys. C17, L923 (1984).Google Scholar
23. Klein, P.B., Furneaux, J.E. and Henry, R.L., Phys. Rev. B34, 8993 (1986).Google Scholar
24. Tanaka, S., Yoshiyama, H., Mikami, Y., Nishiura, J., Ohshio, S., Deguchi, H. and Kobayashi, H., Appl. Phys. Lett. 50, 119 (1987).Google Scholar
25. Tanaka, S., Ohshio, S., Nishiura, J., Kawakami, H., Yoshiyama, H. and Kobayashi, H., Appl. Phys. Lett. 52, 2102 (1988).Google Scholar
26. Title, R.S., Phys. Rev. Lett. 3, 273 (1959).Google Scholar
27. Godlewski, M. and Hommel, D., Phys. Status Solidi (a) 95, 261 (1986).Google Scholar
28. Świątek, K., Godlewski, M. and Hommel, D., Phys. Rev. B 42, 3628 (1990).Google Scholar
29. Przybylińiska, H., Świątek, K., Stąpor, A., Suchocki, A. and Godlewski, M., Phys. Rev. B40, 1748 (1989).Google Scholar
30. Świątek, K., Godlewski, M. and Hommel, D., Phys. Rev. B 43, 9955 (1991).Google Scholar
31. Zimmermann, H. and Boyn, R., Phys. Status Solidi (b) 135, 379 (1986).Google Scholar
32. Świątek, K. and Godlewski, M., J Luminescence 53, 406 (1992).Google Scholar
33. Ando, M. and Ono, Y. A., J. Appl. Phys. 68, 3578 (1990).Google Scholar
34. Świątek, K., Godlewski, M., Hommel, D., Leskelä, M., Niinistö, L., Nykänen, E, Soininen, P., and Tiitta, M., Acta Polytechn. Scand. Ser. Appl. Phys. 170, 237 (1990).Google Scholar
35. Świątek, K., Suchocki, A. and Godlewski, M., Appl. Phys. Lett. 56, 195 (1990).Google Scholar
36. Godlewski, M., in Defect Engineering in Semiconductor Growth. Processing and Device Technology, Proc. MRS Spring Meeting, San Francisco, 1992, MRS Symp. Proc. vol. 262, eds. Ashok, S., Chevallier, J., Sumino, K. and Weber, E. Google Scholar
37. Jörgensen, C.K., Molecular Physics 5, 3 (1962).Google Scholar
38. Tanaka, S., Yoshiyama, H., Mikami, Y., Nishiura, J., Ohshio, S., Deguchi, H. and Kobayashi, H., Appl. Phys. Lett. 50, 119 (1987).Google Scholar
39. Tanaka, S., Ohshio, S., Nishiura, J., Kawakami, H., Yoshiyama, H. and Kobayashi, H., Appl. Phys. Lett. 52, 2102 (1988).Google Scholar
40. Yoshida, M., Tanaka, K., Taniguchi, K., Yamashita, T., Kakihara, Y., and Inoguchi, T., Society for Information Display Intern. Symp. Dig. 1984, p. 251 Google Scholar
41. Yoshida, M., Tanaka, K., Taniguchi, K., Yamashita, T., Kakihara, Y. and Inoguchi, T., Society for Information Display Intern. Symp. Dig. 1980, p. 106 Google Scholar
42. Ando, M. and Y. Ono, A., J. Appl. Phys. 69, 7225 (1991).Google Scholar
43. Świątek, K., Godlewski, M., Niinistö, L. and Leskelä, M., J. Appl. Phys. 74, 3442 (1993).Google Scholar
44. Godlewski, M., Świątek, K., Suchocki, A. and Langer, J.M., J. Luminescence 48/49, 23 (1991).Google Scholar
45. Godlewski, M. and Świątek, K., J. Crystal Growth 117, 634 (1992).Google Scholar
46. Hopfield, J.J., Thomas, D.G. and Lynch, R.T., Phys. Rev. Lett. 17, 312 (1966).Google Scholar
47. Allen, J.W., J. Phys. C4, 1936 (1971).Google Scholar
48. Robbins, D.J. and Dean, P.J., Adv. Phys. 27, 499 (1978).Google Scholar
49. Podlowski, L., Heitz, R., Hoffmann, A. and Broser, I., J. Luminescence 53, 401 (1992).Google Scholar
50. Dingle, R., Phys. Rev. Left. 23, 579 (1969).Google Scholar
51. Thonke, K., Pressel, K., Bohnert, G., Stąpor, A., Weber, J., Moser, M., Malassioti, A., Hangleiter, A. and Scholz, F., Semicond. Sci. Technol. 5, 1124 (1990).Google Scholar
52. Liesert, B.J.Heijmink, Godlewski, M., Stąpor, A., Gregorkiewicz, T., Ammerlaan, C.A.J., Weber, J., Moser, M. and Scholz, F., Appl. Phys. Lett, 58, 2237 (1991).Google Scholar
53. Lambert, B., Corre, A. Le, Toudic, Y., Lhomer, C., Grandpierre, G. and Gauneau, M., J. Phys. : Condense Matter 2, 479 (1990).Google Scholar
54. Velthaus, K.O., Mauch, R.H., Shock, H.W., Tanaka, S., Yamada, K., Ohmi, K., and Kobayashi, H., in Electroluminescence, Proc. 6th Intern. Workshop on Electroluminescence, eds. Singh, V.P. and McClure, J.C. (Cinco Puntos Press, El Paso, 1992), p. 187 Google Scholar
55. Hüttl, B., Troppenz, U., Velthaus, K.O., Ronda, C.R. and Mauch, R.H., J. Appl. Phys. 78, 7282 (1985).Google Scholar