Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:26:03.387Z Has data issue: false hasContentIssue false

EXAFS and Raman Studies of PTMGn:MCl2 and PTMG/PEGn:MCl2 Complexes (M = Co, Zn)

Published online by Cambridge University Press:  10 February 2011

C.A. Furtado
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, C.P. 941, 30123-970, Belo Horizonte, MG, Brazil, [email protected]
A.O. Porto
Affiliation:
Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
G.G. Silva
Affiliation:
Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
R.A. Silva
Affiliation:
Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
M.C. Martins Alves
Affiliation:
Laboratório Nacional de Luz Síncrotron - LNLS, Campinas, SP, Brazil
P.J. Schilling
Affiliation:
Center for Advanced Microstructures and Devices - CAMD, Louisiana State University, Baton Rouge, LA, USA
R. Tittsworth
Affiliation:
Center for Advanced Microstructures and Devices - CAMD, Louisiana State University, Baton Rouge, LA, USA
Get access

Abstract

Extended x-ray absorption fine structure (EXAFS) and Raman spectroscopy measurements have been performed in a series of liquid polymer electrolytes prepared using poly(tetramethylene glycol) (PTMG), and copolymer poly(tetramethylene glycol/poly(ethylene glycol) (PTMG/PEG), as matrices, and ZnCl2or COCl2 as dopants in the concentration range of n = 30 to 90, where n is the molar ratio of Oxigen/Metal cation. EXAFS results have shown the presence of Co-O and Co-Cl coordination shells for PTMG/CoCl2 and PTMG/PEG/CoCl2 systems. Zn-based systems have shown only Zn-Cl bonds in all the concentration range studied. The presence of ZnCl2 and COCl2 species was confirmed by Raman measurements, by the presence of bands characteristic of CI-Zn-Cl and Co-Cl stretching modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Armand, M.B., Chabagno, J.M. and Duclot, M.J., Fast Ion Transport in Solids, edited by. Vashista, P., Mundy, J.N. and Shenoy, G.K. (Elsevier North Holland, New York, 1979), p. 131.Google Scholar
2. Berthier, C., Gorecki, W., Minier, M., Armand, M., Chabagno, J.M. and Rigaud, P., Solid State Ionics 11, 91 (1983).10.1016/0167-2738(83)90068-1Google Scholar
3. Meyer, W.H., Adv. Mater. 10 (6), 439 (1998).10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I3.0.CO;2-I>Google Scholar
4. Linford, R.G., Chemical Society Reviews, 1995, 267.10.1039/cs9952400267Google Scholar
5. McBreen, J., Yang, X.Q., Lee, H.S., Okamoto, Y., J. Electrochem. Soc. 143 (10), 3198 (1996).10.1149/1.1837187Google Scholar
6. McBreen, J., Yang, X.Q., Lee, H.S., Okamoto, Y., Electrochim. Acta 40 (13-14), 2115 (1995).10.1016/0013-4686(95)00149-9Google Scholar
7. Lathan, R.J., Linford, R.G., Pynenburg, R., Schilindwein, W.S., Electrochim. Acta 37 (9), 1529 (1992); R.J. Lathan, R.G. Linford, W.S. Schilindwein, Faraday Discuss. Chem. Soc. 88, 103 (1989).10.1016/0013-4686(92)80105-UGoogle Scholar
8. Chintapalli, S. and Frech, R., Electrochim. Acta 40 (13-14), 2093 (1995).10.1016/0013-4686(95)00146-6Google Scholar
9. Furtado, C.A., Silva, G.G., Pimenta, M.A. and Machado, J.C., Electrochim. Acta 43 (10-11), 1477 (1998).10.1016/S0013-4686(97)10087-1Google Scholar
10. Furtado, C.A., Silva, G.G., Machado, J.C., Pimenta, M.A., Silva, R.A., J. Phys. Chem. 103 (34), 7102 (1999).10.1021/jp984601cGoogle Scholar
11. Correa, M.C., Tolentino, H., Craievich, A. and Cusatis, C., Rev. Sci. Inst. 63, 896 (1992).10.1063/1.1143770Google Scholar
12. Michalowicz, A., Notice d'Utilisation des Programmes EXAFS pour le Macintosh, Fortran, 77 (1989).Google Scholar
13. Teo, B.K., EXAFS: Basic Principles and Data Analysis (Springier, Berlin, 1986).10.1007/978-3-642-50031-2Google Scholar
14. McKale, A.G., Veal, B.W., Paulikas, A.P., Chen, S.K. and Knapp, G.S., J. Amer. Chem. Soc. 110, 3763 (1988).10.1021/ja00220a008Google Scholar
15. Bandara, H. M. N., Schindwein, W. S., Latham, R. J. and Linford, R. G., J. Chem. Soc. Faraday Trans. 90 (23), 3549 (1994).10.1039/ft9949003549Google Scholar
16. D.Morris, D.F.C., Short, E.L., Waters, D.N., J. Inorg. Nucl. Chem. 25, 975 (1963).10.1016/0022-1902(63)80031-7Google Scholar
17. Watt, G.W., Klett, D.S., Inorg. Chem. 3 (5), 782 (1964).10.1021/ic50015a046Google Scholar
18. Mendolia, M.S. and Farrington, G.C., Electrochim. Acta 37 (9), 1695 (1995).10.1016/0013-4686(92)80140-HGoogle Scholar