Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:50:03.811Z Has data issue: false hasContentIssue false

Evolution of Film Crystalline Structure During the Ultrafast Deposition of Crystalline Si Films

Published online by Cambridge University Press:  01 February 2011

Haijun Jia
Affiliation:
[email protected], AIST, Research Center for Photovoltaics, Central 2, 1-1-1 Umezono,, Tsukuba, Ibaraki, 305-8568, Japan
Hiroshi Kuraseko
Affiliation:
[email protected], The Furukawa Electric Co., Ltd., Yawata-Kaigandori,Chiba, 290-8555, Japan
Hiroyuki Fujiwara
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, 1-1-1 Umezono,, Tsukuba, Ibaraki, 305-8568, Japan
Michio Kondo
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, 1-1-1 Umezono,, Tsukuba, Ibaraki, 305-8568, Japan
Get access

Abstract

By using a high density microwave plasma source, an ultrafast deposition rate over 1000 nm/s has been achieved for polycrystalline silicon (poly-Si) film deposition. We find that crystalline structure of the deposited film evolves along the film growth direction, i.e. large grains in surface region while small grains in the bottom region of the film. Systematic study of the deposition process has been performed as a function of the deposition duration. Based on the observed results, a possible mechanism, the annealing-assisted plasma-enhanced chemical vapor deposition, is proposed to describe the film growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kondo, M. Solar Energy Material & Solar Cell 78, 543 (2003)Google Scholar
[2] Rech, B. Repmann, T. Donker, M. N. van den, Berginski, M. Kilper, T. Hupkes, J. Calnan, S. Stiebig, H. Wieder, S. Thin Solid Films 511-512, 548 (2006)Google Scholar
[3] Matsuda, A. Jpn. J. Appl. Phys. 43, 7909 (2004)Google Scholar
[4] Jia, H. Saha, J. K. Shirai, H. Jpn. J. Appl. Phys. 45, 666 (2006)Google Scholar
[5] Mai, Y. Klein, S. Geng, X. and Finger, F. Appl. Phys. Lett. 85, 2839 (2004)Google Scholar
[6] Fujiwara, H. Kondo, M. and Matsuda, A. J. Appl. Phys. 93, 2400 (2003)Google Scholar
[7] Fujiwara, H. Kondo, M. and Matsuda, A. Jpn. J. Appl. Phys. 41, 2821 (2002)Google Scholar
[8] Jia, H. Kuraseko, H. Kondo, M. J. Appl. Phys. 103, 024904 (2008)Google Scholar
[9] Kuraseko, H. Nakamura, T. Toda, S. Koaizawa, H. Jia, H. and Kondo, M. Proceeding of the 4th World Conference on Photovoltaic Energy Conversion, 2006, p 1380 Google Scholar
[10] Voutsas, A. T. Applied Surface Science 208-209, 250 (2003)Google Scholar
[11] Holmen, G. Linnros, J. and Svensson, B. Appl. Phys. Lett. 45, 1116 (1984)Google Scholar