Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T21:19:10.619Z Has data issue: false hasContentIssue false

Evaluationof fracture toughness ofalpha-Nb5Si3 by micro-sized cantilever beam testing

Published online by Cambridge University Press:  18 February 2015

Shiori Suzuki
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University
Nobuaki Sekido
Affiliation:
National Institute for Materials Science
Takahito Ohmura
Affiliation:
National Institute for Materials Science
Seiji Miura
Affiliation:
Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University
Get access

Abstract

A micro-sized fracture testing method has been applied to investigate fracture toughness of alpha-Nb5Si3. Chevron-notched single crystal specimens with a size of 3 x 3 x 15 μm3 were prepared in a grain of polycrystalline alpha-Nb5Si3 by focused ion beam, FIB, technique. Fracture tests were conducted using a nanoindenter at room temperature and linear load-displacement curves and smooth fracture surfaces were obtained. This fracture behavior was presumed to be brittle fracture similar to bulk alpha-Nb5Si3. The average of fracture toughness KQ is 3.45 ± 0.29 MPa√m under a small-scale yielding condition.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miura, S., Ohkubo, K. and Mohri, T., Intermetallics 15,783790(2007)CrossRefGoogle Scholar
Miura, S., Aoki, M., Saeki, Y., Ohkubo, K., Mishima, Y. and Mohi, T., Metall. Mater. Tans. 36A, 489496 (2005)CrossRefGoogle Scholar
Bewlay, B. P., Jackson, M. R. and Lipsitt, H. A., Metall. Mater. Tans. 27A, 38013808(2003)Google Scholar
Bewlay, B. P., Jackson, M. R., Zhao, J. C. and Subramanian, P. R., Metall. Mater. Tans. 34A, 20432052(1996)Google Scholar
Bewlay, B. P., Jackson, M. R. and Lipsitt, H. A., Metall. Mater. Tans. 27A, 38013808 (2003)Google Scholar
Chan, K. S., Mater. Sci. Eng. A409, 257269 (2005)CrossRefGoogle Scholar
Nekkanti, R. M. and Dimiduk, D. M., Intermetallic Matrix Composites. edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R., (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990) pp175182 Google Scholar
Mendiratta, M. G., Lewandowski, J. J. and Dimiduk, D. M., Metall. Mater. Tans. 22A, 15731583(1991)CrossRefGoogle Scholar
Rigney, J. D. and Lewandowski, J. J., Metall. Mater. Tans. 27A, 32923306(1996)CrossRefGoogle Scholar
Kajuch, J., D.Rigney, J. and Lewandowski, J., Mater. Sci. Eng. A115, 5965(1992)CrossRefGoogle Scholar
Wang, X. L., Wang, G. F. and Zhang, K. F., Mater. Sci. Eng. A527, 32533258 (2010)CrossRefGoogle Scholar
Takashima, K. and Higo, Y., Fatigue Frat.Engng.Mater.Struct. 28, 703710(2005)CrossRefGoogle Scholar
Wurster, S., Motz, C. and Pippan, R., Phil. Mag. 92(14), 18031825(2012)CrossRefGoogle Scholar
Östlund, F., Rzepiejewska-Malyska, K., Leifer, K., Hale, L. M., Tang, Y., Ballarini, R., GerberichandJ, W. W.. Michler, Adv. Funct. Mater. 19, 24392444(2009)CrossRefGoogle Scholar
Kirchlechner, C., Imrich, P. J., Grosinger, W., Kapp, M. W., Keches, J., Micha, J. S., Ulrich, O., Thomas, O., Labat, S., Motz, C. and Dehm, G., Acta. Mater. 60, 12521258(2012)CrossRefGoogle Scholar
Anderson, T. L., Fracture Mechanics Fundamentals and Applications, 3rd ed (CRC Press, Boca Raton, FL, 2005)p. 378 CrossRefGoogle Scholar
Munz, D., Bubsey, R. T. and Shannon, J. L. Jr, J. Am. Ceram. Soc. 63 (5), 300305(1980)CrossRefGoogle Scholar
Bluhm, J. I., Eng. Frac. Mech. 7, 593604(1985)CrossRefGoogle Scholar
Brown, W. F. and Srawley, J. E., ASTM STP410 (1966)Google Scholar
Suzuki, S., Endo, T., Sekido, N., Ohmura, T. and Miura, S. (in preparation)Google Scholar
ASTM Standard E 1304-97(Reapproved 2002) Google Scholar