Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:55:50.296Z Has data issue: false hasContentIssue false

Evaluation of tetrakis(diethylamino)hafnium Precursor in the Formation of Hafnium Oxide Films Using Atomic Layer Deposition

Published online by Cambridge University Press:  01 February 2011

Ronald Inman
Affiliation:
American Air Liquide Chicago Research Center, 5230 S. East Avenue, Countryside, IL 60514, U.S.A.
Anand Deshpande
Affiliation:
American Air Liquide Chicago Research Center, 5230 S. East Avenue, Countryside, IL 60514, U.S.A. Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street. Chicago, IL 60607, U.S.A.
Gregory Jursich
Affiliation:
American Air Liquide Chicago Research Center, 5230 S. East Avenue, Countryside, IL 60514, U.S.A.
Get access

Abstract

Due to their compatibility with silicon interface and high dielectric constant, films containing hafnium oxide are becoming strong candidates in replacing silicon oxynitride as the gate dielectric layer in CMOS devices. To achieve ultimate conformality and thickness control, atomic layer deposition is receiving much more attention in recent years for nanometer size film applications. For hafnium oxide deposition by ALD, metal chlorides have traditionally been used as precursors with moisture being the co-reactant; however for gate oxide applications, metal chlorides are not considered suitable due to the corrosive nature of these compounds and the risks of film contamination. Hence, researchers are exploring alternate organometallic precursors in a CVD process with oxygen being the co-reactant. In this work, tetrakis (diethylamino) hafnium precursor is used in an ALD process with moisture co-reactant to deposit hafnium oxide films onto H-terminated Si substrate in a temperature regime of 200 to 350 C. Film composition is determined by x-ray analysis and is found to be stoichiometric without residue from ligand decomposition. Film thickness and uniformity is measured as a function of substrate temperature and reagent pulsing characteristics. These results will be presented and compared with that obtained with the more conventional hafnium chloride precursor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braun, A. E., “High-k Materials Challenge Deposition, Etch, and Metrology”, Semiconductor International, ed. Singer, P. (Reed Electronics Group) November 55 (2002)Google Scholar
2. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001)Google Scholar
3. Alers, G. B., Werder, D. J., Chabal, Y., Lu, H.C., Gusev, E. P., Garfunkel, E., Gustafsson, T., and Urdahl, R., Opt. Lett. 73 1517 (1998)Google Scholar
4. Kingon, A. I., Maria, J.-P., and Streiffer, S. K., Nature (London) 406, 1032 (2000)Google Scholar
5. Bush, B.W., Schulte, W. H., Garfunkel, E., Gustafsson, T., Qi, W., Nich, J., and Lee, J., Phys. Rev B62 R13290 (2000)Google Scholar
6. Copel, M., Gribelyuk, M., and Gusev, E., Appl. Phys. Lett. 76 436 (2000)Google Scholar
7. Lucovsky, G. and Phillips, J. C., Microelectron. Eng. 48 291 (1999)Google Scholar
8. Shu, C. T., Su, Y. K., and Yokoyama, M., Jpn J. Appl. Phys., Part 1 31, 2501 (1992)Google Scholar
9. Kukli, K., Aarik, J., Aidla, A., Simon, H., Ritala, M., and Leskela, M., Appl. Surf. Sci. 112, 236 (1997)Google Scholar
10. Gutowski, M., Jaffe, J.E., Liu, C-L, Stoker, M., Hegde, R. I., Rai, R. S., and Tobin, P.J., Mat. Res. Soc. Symp. Proc. 716, B3.2.1 (2002)Google Scholar
11. Lee, B. H., Kang, L., Nieh, R., Qi, W-J, and Lee, J. C., Appl. Phys. Lett. 76 (14), 1926 (2000)Google Scholar
12. Ohshita, Y., Ogura, A., Hoshino, A., Hiiro, S., Machida, H., J. of Crystal Growth 233, 292 (2001)Google Scholar
13. Ohshita, Y., Ogura, A., Hoshino, A., Suzuki, T., Hiiro, S., Machida, H., J. of Crystal Growth 235, 365 (2002)Google Scholar
14. Ohshita, Y., Ogura, A., Hoshino, A., Hiiro, S., Suzuki, T., Machida, H., Thin Solid Films 406, 215 (2002) HfCl4 ALDGoogle Scholar
15. Aarik, J., Aidla, A., Mandar, H., Sammelselg, V., Uustare, T., J. of Crystal Growth 220, 105 (2000)Google Scholar
16. Aarik, J., Aidla, A., Mandar, H., Uustare, T., Kukli, K., Schuisky, M., Appl. Surf. Sci. 173, 15 (2001)Google Scholar
17. Aarik, J., Aidla, A., Kiisler, A.-A., Uustare, T., Sammelselg, V., Thin Solid Films 340, 110 (1999)Google Scholar
18. Cho, M. H, Roh, Y. S., Whang, C.N., Jeong, K., Nahm, S. W., Ko, D.-H., Lee, J. H., Lee, N. I., and Fujihara, K., Appl. Phys. Lett. 81 (3), 472 (2002)Google Scholar
19. Cho, M, Park, J., Park, H.B., Hwang, C. S., Jeng, J., and Hyun, K. S., Appl. Phys. Lett. 81 (2), 334 (2002)Google Scholar
20. Kukli, K., Ritala, M., Sajavaara, T., Keinonen, J., and Leskela, M., Chem. Vap. Dep. 8 (5), 199 (2002)Google Scholar
21. Denisova, N. D., Safronov, E. K., Pustil'nik, A. I., and Bystrova, O. N., Russ. J. Phys. Chem. 41 (1), 3033 (1967)Google Scholar
22. Nisel'son, L. A., Sokolova, T. D., andV. Stolyarov, I., Russ. J. Phys. Chem. 41 (7), 884886 (1967)Google Scholar
23. Alam, M. A., presented at the 1992 MRS Fall Meeting (Symposium N), Boston, MA 1992 (unpublished)Google Scholar
24. Dillon, A.C., Ott, A.W., Way, J.D. and George, S.M. Surface Science. 322, 230242 (1995)Google Scholar