Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T09:05:08.820Z Has data issue: false hasContentIssue false

Ethylene Polymerization via Metallocenes: An Experimental Study

Published online by Cambridge University Press:  16 March 2015

Ramiro Infante-Martínez*
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo, Coahuila. México
Enrique Saldívar-Guerra
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo, Coahuila. México
Odilia Pérez-Camacho
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo, Coahuila. México
Maricela García-Zamora
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo, Coahuila. México
*
*To whom correspondence should be addressed: [email protected]
Get access

Abstract

An experimental study oriented to gather kinetic modelling data in the ethylene polymerization via metallocenes is reported. Also is illustrated the employment of two methods for determination of kinetic behavior and the instantaneous activity of Ziegler-Natta catalysts in the slurry polymerization of ethylene. The theoretical basis for both methods is described as well as the required instrumentation for its implantation at a laboratory level. An experimental program of polymerization with two different metallocenic systems was executed, showing that the direct (measurement of ethylene flow) as well as the calorimetric method (based on energy balances) give equivalent high quality information on the kinetic performance of the catalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soares, J.B.P., McKenna, T., Cheng, C.P. In Polyolefin Reaction Engineering, Asua, J.M. Ed.; Blackwell Publishing, 2007, Chapter 2, pp 29117.CrossRefGoogle Scholar
Kouzai, I., Liu, B., Wada, T., Terano, M. Macromolecular Reaction Engineering, 1, 160164, 2007 CrossRefGoogle Scholar
Kiyoung-Su, H, Kee-Yon, Y., Hyun-Ku, R. Journal of Applied Polymer Science Vol. 79, 24802493, 2001.Google Scholar
Rincon, F., Esposito, M., Araujo, P., Sayer, C., Le Roux, A. Macromolecular Reaction Engineering, 7(1), 2435, 2013.CrossRefGoogle Scholar
Esposito, M., Sayer, C., Machado, R., Araujo, P. Macromolecular symposia 271, 3847, 2008.CrossRefGoogle Scholar
Korber, F., Hauschild, K., Fink, G., Macromolecular Chemistry and Physics 202(17), 33293333, 2001.3.0.CO;2-D>CrossRefGoogle Scholar
Korber, F., Hauschild, K., Winter, M., Fink, G. Macromolecular Chemistry and Physics 202(17), 33233328, 2001.3.0.CO;2-C>CrossRefGoogle Scholar
Altarawneh, I., Gomes, V., Mourtada, S. Polymer International, 58: 14271434, 2009.CrossRefGoogle Scholar
Isse, V. F., Sheibat-Othman, N., McKenna, T.F.L. The Canadian Journal of Chemical Engineering, 88, 783792, 2010.Google Scholar
Moritz, H.U. In Polymer Reaction Engineering, Reichert, and Geisler, Eds., Weinheim, Germany Verlag-Chemie, pp 248266, 1989.Google Scholar
Ch, Kyung-Jun., Soares, J., A. Penlidis Macromolecular Chemistry Physics, 201, 552557, 2000.3.0.CO;2-A>CrossRefGoogle Scholar