Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:56:24.223Z Has data issue: false hasContentIssue false

Etch Processing of III-V Nitrides

Published online by Cambridge University Press:  10 February 2011

Charles R. Eddy Jr*
Affiliation:
Boston University Electrical & Computer Engineering Dept. 8 Saint Mary's Street, Boston, MA 02215-2421
Get access

Abstract

As III-V nitride devices advance in technological importance, a fundamental understanding of device processing techniques becomes essential. Recent works have exposed various aspects of etch processes. The most recent advances and the greatest remaining challenges in the etching of GaN, AIN, and InN are reviewed. A more detailed presentation is given with respect to GaN high density plasma etching. In particular, the results of parametric and fundamental studies of GaN etching in a high density plasma are described. The effect of ion energy and mass on surface electronic properties is reported. Experimental results identify preferential sputtering as the leading cause of observed surface non-stoichiometry. This mechanism provides excellent surfaces for ohmic contacts to n-type GaN, but presents a major obstacle for Schottky contacts or ohmic contacts to p-type GaN. Chlorine-based discharges minimize this stoichiometry problem by improving the rate of gallium removal from the surface. In an effort to better understand the high density plasma etching process for GaN, in-situ mass spectrometry is employed to study the chlorine-based high density plasma etching process. Gallium chloride mass peaks were monitored in a highly surface sensitive geometry as a function of microwave power (ion flux), total pressure (neutral flux), and ion energy. Microwave power and pressure dependencies clearly demonstrate the importance of reactive ions in the etching of wide band gap materials. The ion energy dependence demonstrates the importance of adequate ion energy to promote a reasonable etch rate (≥ 100-150 eV). The benefits of ion-assisted chemical etching are diminished for ion energies in excess of 350 V, placing an upper limit to the useful ion energy range for etching GaN. The impact of these results on device processing will be discussed and future needs identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S.J. and Shul, R.J. in Gallium Nitride I, Pankove, J. and Moustakas, T.D. Eds., Semiconductor and Semimetals Series, Vol. 50, P. 103, Academic Press, New York, NY (1998).Google Scholar
2 Youtsey, C., Adesida, I. and Bulman, G., Electronics Lett. 33, 245 (1997).Google Scholar
3 Youtsey, C., Adesida, I. and Bulman, G., Appl. Phys. Lett. 71, 2151 (1997).Google Scholar
4 Youtsey, C., Adesida, I., Romano, L.T. and Bulman, G., Appl. Phys. Lett. 72, 560 (1998).Google Scholar
5 Youtsey, C., Romano, L.T. and Adesida, I., Appl. Phys. Lett. 73, 797 (1998).Google Scholar
6 Lee, H., Oberman, D.B. and Harris, J.S. Jr, Appl. Phys. Lett. 67, 1754 (1995).Google Scholar
7 Hughes, W.C., Roland, W.H. Jr, Johnson, M.A.L., Cook, J.W. Jr and Schetzina, J.F., in Gallium Nitride & Related Materials, Ponce, F.A., Dupuis, R.D., Nakamura, S. and Edmond, J.A. eds., MRS Proc. Vol. 395, p. 757, Materials Research Society, Pittsburgh, PA (1996).Google Scholar
8 Adesida, I., Mahajan, A., Andideh, E., Khan, M. Asif, Olsen, D.T. and Kuznia, J.N., Appl. Phys. Lett. 63, 2777 (1993).Google Scholar
9 Vartuli, C.B., MacKenzie, J.D., Lee, J.W., Abernathy, C.R., Pearton, S.J. and Shul, R.J., J. Appl. Phys. 80, 3705 (1996).Google Scholar
10 Ping, A.T., Adesida, I., Khan, M. Asif and Kuznia, J.N., Electronics Lett. 30, 1895 (1994).Google Scholar
11 McLane, G.F., Casas, L., Pearton, S.J. and Abernathy, C.R., Appl. Phys. Lett. 66, 3328 (1995).Google Scholar
12 Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L.F. and Hersee, S.D., Appl. Phys. Lett. 68, 367 (1996).Google Scholar
13 Shul, R.J., Willison, C.G., Bridges, M.M., Han, J., Lee, J.W., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Donovan, S.M., Zhang, L., and Lester, L.F., J. Vac. Sci. Technol. A 16, 1621 (1998).Google Scholar
14 Cho, H., Vartuli, C.B., Donovan, S.M., Abernathy, C.R., Pearton, S.J., Shul, R.J., Constantine, C., J. Vac. Sci. Technol. A 16, 1631 (1998).Google Scholar
15 Lee, Y.H., Kim, H.S., Yeom, G.Y., Lee, J.W., Yoo, M.C. and Kim, T.I., J. Vac. Sci. Technol. A 16, 1478 (1998).Google Scholar
16 Shul, R.J., Kilicoyne, S.P., Crawford, M. Hagerott, Parmeter, J.E., Vartuli, C.B., Abernathy, C.R. and Pearton, S.J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
17 Pearton, S.J., Abernathy, C.R. and Ren, F., J. Vac. Sci. Technol. A. 11, 1772 (1993).Google Scholar
18 Pearton, S.J., Abernathy, C.R. and Vartuli, C.B., Electronics Lett. 30, 1985 (1994).Google Scholar
19 Vartuli, C.B., Pearton, S.J., Mackenzie, J.D., Abernathy, C.R. and Shul, R.J., J. Electrochem. Soc. 143, L246 (1996).Google Scholar
20 Pearton, S.J., Abernathy, C.R., Ren, F. and Lothian, J.R., J. Appl. Phys. 76, 1210 (1994).Google Scholar
21 McLane, G.F., Pearton, S.J. and Abernathy, C.R., in Wide Bandgap Semiconductors And Devices, PV 95-21, p. 204, The Electrochemical Society Proceedings, Pennington, NJ (1995).Google Scholar
22 Shul, R.J., Howard, A.J., Pearton, S.J., Abernathy, C.R. and Vartuli, C.B., in Wide Bandgap Semiconductors And Devices, PV 95-21, p. 217, The Electrochemical Society Proceedings, Pennington, NJ (1995).Google Scholar
23 Shul, R.J., Howard, A.J., Kilcoyne, S.P., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A. and Bozack, M.J., in Proceedings 22nd SOTAPOCS, PV 95-6, p. 209, The Electrochemical Society Proceedings, Pennington, NJ (1995).Google Scholar
24 Eddy, C.R. Jr and Molnar, B. in Gallium Nitride & Related Materials, Ponce, F.A., Dupuis, R.D., Nakamura, S. and Edmond, J.A. Eds., MRS Proc. Vol. 395, p. 745, Materials Research Society, Pittsburgh, PA (1996).Google Scholar
25 Molnar, B., Eddy, C.R. Jr and Doverspike, K., J. Appl. Phys. 78, 6132 (1995).Google Scholar
26 Ping, A.T., Schmitz, A.C., Adesida, I., Khan, M. Asif, Chen, Q. and Yang, J.W., J. Electron. Mater. 26, 266 (1997).Google Scholar
27 Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R. and Shul, R.J., Appl. Phys. Lett. 67, 2329 (1995).Google Scholar
28 Ishikawa, H., Kobayashi, S., Koide, Y., Yamasaki, S., Nagai, S., Umezaki, J., Koike, M. and Murakami, M., J. AppL. Phys. 81, 1315 (1997).Google Scholar
29 Eddy, C.R. Jr and Molnar, B., to appear in J. Electron. Mater., March 1999 issue.Google Scholar
30 Brandt, M.S., Johnson, N.M., Molnar, R.J., Singh, R. and Moustakas, T.D., Appl. Phys. Lett. 64, 2264 (1994).Google Scholar
31 Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
32 Eddy, C.R. Jr, Dobisz, E.A., Meyer, J.R. and Hoffman, C.A., J. Vac. Sci. Technol. A 11, p. 1763 (1993)Google Scholar
33 Eddy, C.R. Jr, Leonhardt, D., Douglass, S.R., Thorns, B.D. and Butler, J.E., J. Vac. Sci. Technol. A 17, 38 (1999).Google Scholar
34 Eddy, C.R. Jr, Glembocki, O.J., Leonhardt, D., Shamamian, V.A., Holm, R.T., Thorns, B.D., Butler, J.E., and Pang, S.W., J. Electron. Mater. 26, 1320 (1997).Google Scholar
35 Leonhardt, D., Eddy, C.R. Jr, Shamamian, V.A., Holm, R.T., Glembocki, O.J. and Butler, J. E., J. Vac. Sci. Technol. A 16, 1547 (1998).Google Scholar