Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:25:47.977Z Has data issue: false hasContentIssue false

Epitaxial Deposition of 3C-SiC on Si Using Unconventional Sputtering of a Hollow Cathode

Published online by Cambridge University Press:  01 February 2011

James L Huguenin-Love
Affiliation:
[email protected], University of Nebraska, Department of Electrical Engineering, Lincoln, Nebraska, United States
Rodney J Soukup
Affiliation:
[email protected], University of Nebraska, Department of Electrical Engineering, Lincoln, Nebraska, United States
Natale J Ianno
Affiliation:
[email protected], University of Nebraska, Department of Electrical Engineering, Lincoln, Nebraska, United States
Nole T Lauer
Affiliation:
[email protected], University of Nebraska, Department of Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

Epitaxial 3C-SiC was grown using an unconventional technique for epitaxial growth. Thin films of 3C-SiC were deposited onto the (111) and (110) faces of Si using pulsed DC sputtering of a high purity, hollow cathode SiC target. The films were studied using x-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM), and auger electron spectroscopy (AES) techniques. XRD results presented as Bragg diffraction spectra and pole figures, and electron diffraction patterns verify crystal orientation and epitaxy. In addition, AES profiles identify the compositional integrity of the deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cooper, J. Jr , Mater. Sci. Forum 389–393, 1522 (2002).Google Scholar
2 Nelson, W. E., Halden, F. A. and Rosengreen, A., J. Appl. Phys. 37 (1), 333336 (1966).Google Scholar
3 Khan, I. H., Mater. Res. Bull. 4, S285–S292 (1969).Google Scholar
4 Suemitsu, M., Miyamoto, Y., Handa, H. and Konno, A., e-Journal of Surface Science and Nanotechnology 7, 311313 (2009).Google Scholar
5 Volz, K., Schreiber, S., Gerlach, J. W., Reiber, W., Rauschenbach, B., Stritzker, B., Assmann, W. and Ensinger, W., Mater. Sci. Eng. A 289 (1-2), 255264 (2000).Google Scholar
6 Zheng, H., Zhu, J., Fu, Z., Lin, B. and Li, X., J. Mater. Sci. Technol. 21 (4), 536540 (2005).Google Scholar
7 Nishiguchi, T., Nakamura, M., Nishio, K., Isshiki, T. and Nishino, S., Appl. Phys. Lett. 84 (16), 3082-3084 (2004).Google Scholar
8 Schrader, J. S., Huguenin-Love, J., Soukup, R. J., Ianno, N. J., Exstrom, C. L., Darveau, S. A., Udey, R. N. and Dalal, V. L., Sol. Energy Mater. Sol. Cells 90 (15), 23382345 (2006).Google Scholar
9 Soukup, R. J., Huguenin-Love, J., Ianno, N. J. and Thompson, D. W., J. Vac. Sci. Technol. A 26 (1), 1722 (2008).Google Scholar
10 Soukup, R. J., Ianno, N., Huguenin-Love, J., Lauer, N., Hofmann, T. and Hubicka, Z., ECS Trans. 16 (7), 201-210 (2008).Google Scholar
11 Soukup, R. J., Ianno, N. J. and Huguenin-Love, J., Sol. Energy Mater. Sol. Cells 91 (15-16), 13831387 (2007).Google Scholar