Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T06:59:31.907Z Has data issue: false hasContentIssue false

Enhanced Electrical properties in Mn-doped Bi3.25La0.75Ti3O12 thin films

Published online by Cambridge University Press:  26 February 2011

Sushil Kumar Singh
Affiliation:
[email protected], Tokyo Institute of Technology, Interdisciplinary Graduate School of Science and Engineering, 4259-J2-67 Nagatsuda, Midori-ku, 226-8503, Yokohama, N/A, N/A, Japan, 0081-45-924-5874, 0081-45-924-5147
Hiroshi Ishiwara
Affiliation:
Get access

Abstract

Mn-doped Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated by depositing sol-gel solutions on Pt/Ti/SiO2/Si <100> substrates. The surface morphology and ferroelectric properties of Mn-doped BLT films depend upon the orientation of the films. Small amount of Mn-doping in BLT films influences the ferroelectric properties of the films, that is, it enhances the remanent polarization and reduces the coercive field. The 1% Mn-doped BLT films show enhanced remanent polarization and reduced the coercive field by about 22%. To the contrary, Mn-doping more than 1% decreases polarization gradually. Mn-doping significantly improves the fatigue resistance of BLT films. The reduced polarization in the 3.3% Mn-doped thin film recovers during switching cycles higher than 5 × 105. Under high switching field, the probability of field-assisted unpinning of domains is expected to be high and this may be the main cause for increase in polarization after 5 × 105 in the 3.3% Mn-doped BLT film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Scott, J. F., and de Araujo, C. A. Paz, Science 246, 1400 (1989).Google Scholar
[2] de Araujo, C. A. Paz, Cuchiaro, J. D., McMillan, L. D., Scoot, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
[3] Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, L., and Joe, W., Nature 401, 682 (1999).Google Scholar
[4] Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., and Miyayama, M., J. Appl. Phys. 92, 1518 (2002).Google Scholar
[5] Uchida, H., Yoshikawa, H., Okada, I., Matsuda, H., Iijima, T., Watanabe, T., and Funakubo, H., Jpn. J. Appl. Phys. 41, 6820 (2002).Google Scholar
[6] Chon, U., Jang, H. M., Kim, M. G., and Chang, C. H., Phys. Rev. Lett. 89, 087601 (2002).Google Scholar
[7] Matsuda, H., Ito, S., and Iijima, T., Appl. Phys. Lett. 83, 5023 (2003).Google Scholar
[8] Noguchi, Y., and Miyayama, M., Appl. Phys. Lett. 78, 1903 (2001).Google Scholar
[9] Wang, X., and Ishiwara, H., Appl. Phys. Lett. 82, 2479 (2003).Google Scholar
[10] Duiker, H. M., Beale, P. D., Scott, J. F., de Araujo, C. A. Paz, Meinick, B. M., and Cuchiaro, J. D., J. Appl. Phys. 68, 5783 (1990).Google Scholar
[11] Zhang, S. T., Chen, Y. F., Wang, J., Cheng, G. X., Liu, Z. G., and Ming, N. B., Appl. Phys. Lett. 84, 3660 (2004).Google Scholar
[12] Singh, S. K., and Ishiwara, H., Thin Solid Films (In press) (2005).Google Scholar
[13] Watanabe, T., Funakubo, H., and Saito, K., J. Mater. Res. 16, 303 (2001).Google Scholar
[14] Okamura, S., Takaoka, M., Nishida, T., and Shiosaki, T., Jpn. J. Appl. Phys. 39, 5481 (2000).Google Scholar
[15] Al-Shareef, H. N., Dimos, D., Boyle, T. J., Warren, W. L., and Tuttle, B. A., Appl. Phys. Lett. 68, 690 (1996).Google Scholar
[16] Wu, D., li, A., Ling, H., Yu, T., Liu, Z., and Ming, N., Appl. Phys. Lett. 76, 2208 (2000).Google Scholar