No CrossRef data available.
Article contents
Enhanced Electrical properties in Mn-doped Bi3.25La0.75Ti3O12 thin films
Published online by Cambridge University Press: 26 February 2011
Abstract
Mn-doped Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated by depositing sol-gel solutions on Pt/Ti/SiO2/Si <100> substrates. The surface morphology and ferroelectric properties of Mn-doped BLT films depend upon the orientation of the films. Small amount of Mn-doping in BLT films influences the ferroelectric properties of the films, that is, it enhances the remanent polarization and reduces the coercive field. The 1% Mn-doped BLT films show enhanced remanent polarization and reduced the coercive field by about 22%. To the contrary, Mn-doping more than 1% decreases polarization gradually. Mn-doping significantly improves the fatigue resistance of BLT films. The reduced polarization in the 3.3% Mn-doped thin film recovers during switching cycles higher than 5 × 105. Under high switching field, the probability of field-assisted unpinning of domains is expected to be high and this may be the main cause for increase in polarization after 5 × 105 in the 3.3% Mn-doped BLT film.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 902: Symposium T – Ferroelectric Thin Films XIII , 2005 , 0902-T03-52
- Copyright
- Copyright © Materials Research Society 2006