Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T12:02:12.333Z Has data issue: false hasContentIssue false

Engineered Nanocomposites for Solid Oxide Fuel Cells By Colloidal Crystal Templating

Published online by Cambridge University Press:  17 February 2011

Martyn A McLachlan
Affiliation:
[email protected], Imperial College London, Materials, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom, London, SW7 2AZ, United Kingdom, +44(0))2075949692
An Ying
Affiliation:
[email protected], Imperial College London, Department of Materials and London Centre for Nanotechnology, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom, London, SW7 2AZ, United Kingdom
John A Kilner
Affiliation:
[email protected], Imperial College London, Department of Materials and London Centre for Nanotechnology, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom, London, SW7 2AZ, United Kingdom
David W McComb
Affiliation:
[email protected], Imperial College London, Department of Materials and London Centre for Nanotechnology, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom, London, SW7 2AZ, United Kingdom
Stephen J Skinner
Affiliation:
[email protected], Imperial College London, Department of Materials and London Centre for Nanotechnology, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom, London, SW7 2AZ, United Kingdom
Get access

Abstract

Colloidal crystal templating has been used to prepare three-dimensionally ordered macroporous (3DOM) films of La1-xSrxMnO3-d (LSM), yttria stabilized zirconia (YSZ) and porous composites of LSM and YSZ. These materials have direct applications as cathodes in solid oxide fuel cells (SOFCs). The 3DOM materials have been prepared by low temperature processing, which is a major step towards overcoming electrode sintering, interdiffusion and deleterious phase formation associated with conventional high temperature processing. The preparation of porous composites and the elimination of high temperature densification presents an opportunity to create SOFCs with a large number of triple phase boundaries which should be accompanied by an corresponding improvement in device performance. The microstructure of the 3DOM films was assessed using scanning electron microscopy and the crystal structure and phase purity assessed by x-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Stein, A., Advanced Materials, 2003. 15(10): p. 763775.Google Scholar
2 Holland, B.T., Blanford, C.F., Do, T., and Stein, A., Chemistry of Materials, 1999. 11: p. 795805.Google Scholar
3 Gaillot, D., Yamashita, T., and Summers, C.J.,. Physical Review B, 2005. 72: p. 205109–1 205109.Google Scholar
4 Meseguer, F., Blanco, A., , Miguez et al. , Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 202: p. 281290.Google Scholar
5 Stein, A. and Schroden, R.C., Current Opinion in Solid State and Materials Science, 2001. 5(6): p. 553564.Google Scholar
6 Johnson, N.P., McComb, D.W., , Richel et al. , Synthetic Metals, 2001. 116: p. 369473.Google Scholar
7 Lee, Y.-J. and Braun, P.V., Advanced Materials, 2003. 15(7-8): p. 563566.Google Scholar
8 Holland, B.T., Blanford, C.F., and Stein, A., Science, 1998. 281: p. 538540.Google Scholar
9 Kamp, U., Kitaev, V., Freymann, von et al. , Advanced Materials, 2005. 17(4): p. 438443.Google Scholar
10 Mclachlan, M.A., McComb, D.W., Berhanu, S. et al. , Journal of Materials Chemistry, 2007. 17(36), 37733776.Google Scholar
11 Fergus, J.W., Journal of Power Sources, 2006. 162(1): p. 3040.Google Scholar
12 Fergus, J.W., Solid State Ionics, 2006. 177(17-18): p. 15291541.Google Scholar
13 Gauckler, L.J., Beckel, D., Buergler, B.E. et al. ., Chimia, 2004. 58(12): p. 837850.Google Scholar
14 Goodenough, J.B., Annual Review of Materials Research, 2003. 33: p. 91128.Google Scholar
15 Kendall, K., International Materials Reviews, 2005. 50(5): p. 257264.Google Scholar
16 Lashtabeg, A. and Skinner, S.J., Journal of Materials Chemistry, 2006. 16(31): p. 31613170.Google Scholar
17 Ormerod, R.M., Chemical Society Reviews, 2003. 32(1): p. 1728.Google Scholar
18 Minh, N.Q., Solid State Ionics, 2004. 174(1-4): p. 271277.Google Scholar
19 Steele, B.C.H., Solid State Ionics, 2000. 134(1-2): p. 320.Google Scholar
20 Dhallu, M. and Kilner, J.A., Journal of Fuel Cell Science and Technology, 2005. 2(1): p. 2933.Google Scholar
21 Co, A.C., Xia, S.J., and Birss, V.I., Journal of the Electrochemical Society, 2005. 152(3): p. A570–A576.Google Scholar
22 Huang, Y.Y., Vohs, J.M., and Gorte, R.J., Journal of the Electrochemical Society, 2005. 152(7): p. A1347–A1353.Google Scholar
23 Ji, Y., Kilner, J.A., and Carolan, M.F., Solid State Ionics, 2005. 176(9-10): p. 937943.Google Scholar
24 Lu, C., Sholklapper, T.Z., Jacobson, C.P. et al. , Journal of the Electrochemical Society, 2006. 153(6): p. A1115–A1119.Google Scholar
25 Suzuki, T., Awano, M., Jasinski, P. et al. , Solid State Ionics, 2006. 177(19-25): p. 20712074.Google Scholar
26 Wang, W.G., Liu, Y.L., Barfod, R. et al. , Electrochemical and Solid State Letters, 2005. 8(12): p. A619–A621.Google Scholar
27 Chen, F., Xia, C., and Liu, M., Chem. Lett., 2001: p. 10321033.Google Scholar
28 Ruiz-Morales, J.C., Canales-Vazquez, J., Pena-Martinez, J. et al. , Journal of Materials Chemistry, 2006. 16: p. 540542.Google Scholar
29 Ruiz-Morales, J.C., Canales-Vazquez, J., , Pena-Martinez et al. , Electrochimica Acta, 2006. 52(1): p. 278284.Google Scholar
30 Sholklapper, T.Z., Lu, C., Jacobson, C.P. et al. ,, Electrochemistry Solid State Letters., 2006. 9: p. A376–A378.Google Scholar
31 Chen, F. and Liu, M., Journal of the European Ceramic Society, 2001. 21: p. 127134.Google Scholar
32 Choi, J.H., Jang, J.H., and Oh, S.M., Electrochimica Acta, 2001. 46: p. 867874.Google Scholar
33 Lamas, D.G. and Reca, N.E.W., Journal of Materials Science, 2000. 35: p. 55635567.Google Scholar
34 Eriksson, S.G., Ivanov, S., Eriksen, J. et al. ,. Materials Science Forum, 2001. 378: p. 505510.Google Scholar
35 Barron, C.C.A., McLachlan, M.A., Zhang, Q. et al. , Integrated Ferroelectrics, 2007(In Press).Google Scholar
36 Waterhouse, G.I.N. and Waterland, M.R., Polyhedron, 2007. 26(2): p. 356368.Google Scholar
37 McLachlan, M.A., Johnson, N.P., DeLaRue, Richard M. et al. , Journal of Materials Chemistry, 2004. 14(2): p. 144150.Google Scholar
38 Jiang, P., Bertone, J.F., Hwang, K.S. et al. , Chemistry of Materials, 1999. 11: p. 21322140.Google Scholar