Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T08:08:29.877Z Has data issue: false hasContentIssue false

ENERGY STORAGE, RELEASE, AND DISSIPATION IN THE GECKO ADHESION SYSTEM

Published online by Cambridge University Press:  21 March 2011

Jonathan B. Puthoff
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA
Michael Prowse
Affiliation:
Materials Science & Eng. Dept., University of Washington, Seattle, WA 98195, USA
Matt J. Wilkinson
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA
Kellar Autumn
Affiliation:
Department of Biology, Lewis & Clark College, Portland, OR 97219, USA Materials Science & Eng. Dept., University of Washington, Seattle, WA 98195, USA
Get access

Abstract

Different types of biological adhesion can be categorized according to the length scales, structures, and materials involved. The setal adhesion system of the gekkonid lizards occupies a hierarchy of scales from the toes (~ 1 cm) to the terminal spatular pads on the setal branches (~ 100 nm). This unique combination of scale and foot-hair morphology allow the animal robust, controllable, and near-universal adhesion via van der Waals attraction, but it is also apparent that the mechanical behavior of the β-keratin plays an important role in an animal’s climbing ability. Experimental results show a four-fold increase in the viscoelastic loss tangent of β-keratin, alongside a substantial increase in adhesion of setal arrays, over a range of relative humidity from 10 to 80%. A model of single-spatular deformation predicts that the elastic energy stored in the setal branches, energy which is not completely recovered on detachment, is strongly influenced by these properties changes. The enhanced dissipation characteristics of the system explain the effects of environmental humidity on the clinging ability of geckos.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Autumn, K., et al. , J. Exp. Biol. 209: 260272 (2006).Google Scholar
2. Russell, A.P., Integr. Comp. Biol. 42: 11541163 (2002).Google Scholar
3. Autumn, K., et al. , J. Exp. Biol. 209: 35693579 (2006).10.1242/jeb.02486Google Scholar
4. Hansen, W.R. and Autumn, K., Proc. Natl. Acad. Sci. USA 102: 385389 (2005).10.1073/pnas.0408304102Google Scholar
5. Autumn, K., et al. , Proc. Natl. Acad. Sci. USA 99: 1225212256 (2002).Google Scholar
6. Geim, A.K., et al. , Nat. Mater. 2: 461463 (2003).Google Scholar
7. Sitti, M. and Fearing, R.S., Proceedings of the 2nd IEEE Conference on Nanotechnology 137140 (2002).Google Scholar
8. Bhushan, B., J. Adhes. Sci. Technol. 21: 12131258 (2007).Google Scholar
9. Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. Lond. A 324: 301313 (1971).10.1098/rspa.1971.0141Google Scholar
10. Kendall, K., J. Phys. D: Appl. Phys. 8: 14491452 (1975).Google Scholar
11. Gravish, N., Wilikinson, M., and Autumn, K., J. R. Soc. Interface 5: 339348 (2008).Google Scholar
12. Huber, G., et al. , Proc. Natl. Acad. Sci. USA 102: 1629316296 (2005).Google Scholar
13. Bonser, R.H.C., J. Mater. Sci. Lett. 21: 15631564 (2002).Google Scholar
14. Taylor, A.M., Bonser, R.H.C., and Farrent, J.W., J. Mater. Sci. 39: 939942 (2004).10.1023/B:JMSC.0000012925.92504.08Google Scholar
15. Maugis, D. and Barquins, M., J. Phys. D: Appl. Phys. 11: 19892023 (1978).Google Scholar
16. Andrews, E.H., J. Polym. Sci. Pol. Sym. 72: 295297 (1985).10.1002/polc.5070720129Google Scholar
17. Saulnier, F., et al. , Macromolecules 37: 10671075 (2004).Google Scholar
18. Jagota, A. and Bennison, S.J., Integr. Comp. Biol. 42: 11401145 (2002).Google Scholar