Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:02:52.119Z Has data issue: false hasContentIssue false

Electron-Phonon Coupling Strength of Specific Phonons from First Principles Lapw Calculations

Published online by Cambridge University Press:  28 February 2011

H. Krakauer
Affiliation:
Department of Physics, College of William and Mary, Williamsburg, VA 23185
R. E. Cohen
Affiliation:
Complex Systems Theory Branch, Naval Research Laboratory, Washington, DC 20375-5000
W. E. Pickett
Affiliation:
Complex Systems Theory Branch, Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

Electron-phonon matrix elements, phonon linewidths and mode coupling strengths are being calculated for La2-xMxCuO4 (M-divalent cation, for paramagnetic x-0.0 and for x-0.15 in a rigid band picture) from first principles local density calculations. The change in potential due to a particular phonon mode is calculated from the difference of self-consistent one-electron potentials, and appropriate Fermi surface averages are carried out for selected modes, allowing us to obtain the phonon linewidth due to the electron-phonon interaction, and the corresponding coupling strength λQ. Here we establish the numerical accuracy within the dual representation of the potential used in the Linearized Augmented Plane Wave (LAPW) method. Evaluations of phonon linewidths and mode coupling strengths are presented for Al and Nb and compared with previous information on these modes. We present preliminary results for the full matrix elements and coupling of the La2CuO4 oxygen planar X-point breathing mode, and compare with a simpler approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bourne, L. C., Hoen, S., Crommie, M. F., Creager, W. N., Zettl, A., Cohen, M. L., Bernardez, L., Kinney, J., and Morris, D. E., Solid State Commun. 67, 707 (1988).Google Scholar
2. Batlogg, B., Kourouklis, G., Weber, W., Cava, R. J., Jayaraman, A., White, A. E., Short, K. T., Rupp, L. W., and Rietman, E. A., Phys. Rev. Lett. 59, 912 (1987).Google Scholar
3. Weber, W., Phys. Rev. Lett. 58, 1371 (1987).Google Scholar
4. Pickett, W. E., Krakauer, H., Papaconstantopoulos, D. A., and Boyer, L. L., Phys. Rev. B35, 7252 (1987).Google Scholar
5. Jarlborg, T., Solid State Commun. 67, 297 (1988).CrossRefGoogle Scholar
6. Cohen, R. E., Pickett, W. E., and Krakauer, H., this volume.Google Scholar
7. Lam, P. K., Dacorogna, M. M., and Cohen, M. L., Phys. Rev. B34, 5065 (1986).Google Scholar
8. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B24, 864 (1981).Google Scholar
9. Krakauer, H., Pickett, W. E., and Cohen, R. E., J. Supercond. 1, 111 (1988).Google Scholar
10. Mazin, I. I. and Rashkeev, S. N., Solid State Commun. 68, 93 (1988).Google Scholar
11. Dacorogna, M. M., Cohen, M. L., and Lam, P. K., Phys. Rev. Lett. 55, 837 (1985).Google Scholar
12. Butler, W. H., Pinski, F. J., and Allen, P. B., Phys. Rev. B19, 3708 (1979).Google Scholar
13. Wakabayashi, N., Phys. Rev. B33, 6771 (1986).Google Scholar
14. Allen, P. B., Pickett, W. E., and Krakauer, H., Phys. Rev. B37, 7482 (1988).Google Scholar