Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T04:12:33.180Z Has data issue: false hasContentIssue false

Electronic Structure Engineering of the Linewidth Enhancement Factor in Mid-Infrared Semiconductor Laser Active Regions

Published online by Cambridge University Press:  10 February 2011

Michael E. Flatté
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
J.T. Olesberg
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
T.F. Boggess
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
Get access

Abstract

The linewidth enhancement factor is a fundamental parameter that characterizes the limit of spectral purity and the tendency for filamentation in a semiconductor laser. For either narrow-line or high-power operation, it is generally desirable that the linewidth enhancement factor be minimized. This parameter depends primarily on the shape of the differential gain spectrum of the active region material. In mid-infrared laser materials, band structure engineering has been used routinely to minimize the effects of nonradiative recombination. This same approach can be used to tailor the differential gain spectrum of these materials to minimize the linewidth enhancement factor.

Favorable features of the electronic structure of the material include 1) band-edge dispersion in the conduction band which shifts the peak of the gain away from the band edgeCand 2) intersubband absorption resonances, which can be designed to lie above the peak gain in energy. Both of these strategies shift the peak of the differential gain closer to the peak gain, and thus reduce the linewidth enhancement factor. These electronic structure design strategies can be used to reduce the linewidth enhancement factor in type-II InAs/GaInSb systems to almost 1.0, which is significantly smaller than typical values of 2.5–5 in type-I strained quantum wells. We note that a linewidth enhancement factor close to 1 is much smaller even than a typical linewidth enhancement factor in visible or near-infrared semiconductor lasers. Furthermore in some materials the peak of the differential gain lies in a region of positive gain, indicating that a grating could be used to select a mode with negligible linewidth enhancement factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henry, C. H., IEEE J. Quantum Electron. 18, 259, 1982.Google Scholar
2. Kano, F., Yoshikuni, Y., Fukuda, M., and Yoshida, J., IEEE Photon. Technol. Lett. 3, 877 (1991).Google Scholar
3. Lee, S. S., Figueroa, L., and Ramaswamy, R., IEEE J. Quantum Electron. 25, 862 (1989).Google Scholar
4. Ohtoshi, T. and Chinone, N., IEEE Photon. Techol. Lett. 1, 117 (1989).Google Scholar
5. Westbrook, L. D., Electron. Lett. 21, 1018 (1985).Google Scholar
6. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., and Ram-Mohan, L. R., Appl. Phys. Lett. 67, 757 (1995); I. Vurgaftman and J. R. Meyer, IEEE J. Sel. Top. Quantum Electron. 3, 475 (1997).Google Scholar
7. Malin, J. I., Meyer, J. R., Felix, C. L., Lindle, J. R., Goldberg, L., Hoffman, C. A., Bartoli, F. J., Lin, C.-H., Chang, P. C., Murray, S. J., Yang, R. Q., and Pei, S.-S., Appl. Phys. Lett. 68, 2976 (1996).Google Scholar
8. Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Hutchinson, A., and Cho, A. Y., Appl. Phys. Lett. 67, 3057 (1995).Google Scholar
9. Anson, S. A., Olesberg, J. T., Flatté, Michael E., Hasenberg, T. C., and Boggess, T. F., J. Appl. Phys. 86, 713 (1999).Google Scholar
10. Choi, H. K. and Turner, G. W., Appl. Phys. Lett. 67, 332 (1995).Google Scholar
11.The structure (including bulk constituent energies) is taken from Fig. 1 of Kurtz, S. R., Allerman, A. A., and Biefeld, R. M., Appl. Phys. Lett. 70, 3188 (1997).Google Scholar
12. Olesberg, J. T., Flatté, M. E., Brown, B. J., Grein, C. H., Hasenberg, T. C., Anson, S. A., and Boggess, T. F., Appl. Phys. Lett. 74, 188 (1999).Google Scholar
13. Flatté, Michael E., Grein, C. H., Hasenberg, T. C., Anson, S. A., Jang, D.-J., Olesberg, J. T., and Boggess, T. F., Phys. Rev. B 59, 5745 (1999).Google Scholar