Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:13:42.497Z Has data issue: false hasContentIssue false

Electronic Properties of Potassium-Doped Carbon Nanotube Lattice

Published online by Cambridge University Press:  10 February 2011

Susumu Saito*
Affiliation:
Department of Physics, Tokyo Institute of Technology 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
Get access

Abstract

We study the electronic structure of potassium-doped crystalline lattice of so-called (10.10) carbon nanotubes in the framework of the density-finctional theory. Tie stoichiometrv of the material studied is K2C80 which was originally proposed in designing the superconducting doped nanotube material based on tile size of dopants and the charge transfer being favorable for superconductivity. Electronic band dispersions obtained are actually found to be very similar to those of the pristine (10,10) nanotube lattice with the upward shift of the Fermi energy by 1 eV above the second conduction-band miinimum. Tie system therefore possesses higher Fermi-level density of states than the pristine material with rather sinmple charge transfer from K to C sites, and is confirned to be a good candidate for a naxiotube superconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kratschmmer, W.. Lanmb, L. D.. Fostiropoulos, K.. and Huffman, D. B.. Nature 347. 354 (1990).Google Scholar
2. Rosen, A. and Wastberg, B., Z. Phys. D 12, 387 (1989).Google Scholar
3. Saito, S.. in Clusters and Cluster-Assembled Materials. edited by Averback, B. S.. Bernholc, J.. and Nelson, D. L. (Mat. Res. Soc. 1990 Fall Meeting Proc. Vol. 206) p.115.Google Scholar
4. Hebard, A. F.. Rosseinsky, M. J.: Haddon, R. C., Murphy, D. W.. Glarum, S. H.. Palstra, T. T. M.. Ramirez, A. P.. and Kortan, A. R., Nature 350, 600 (1991).Google Scholar
5. Tanigaki, K.. Ebbessen, T. W. Saito, S.. Mizuki, J.. Tsai, J. S.. Kubo, Y.. and Kuroshima, S.. Nature 352, 222 (1991).Google Scholar
6. Allemand, P.-M.. Khemani, K. C., Koch, A., Wudl, F.. Holczer, K.. Donovan, S.. Gruner, G.. Thompsosn, J. D.. Science 253. 302 (1991)Google Scholar
7. Iijima, S., Nature 354. 56 (1991).Google Scholar
8. Thess, A. et al. Science 273. 483 (1996).Google Scholar
9. Saito, S., in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K. M. and Ruoff, R. S., Vol.4 (Proc. 191st Electrochemical Society Meeting, Montreal. May 1997) p. 1055.Google Scholar
10. Hochnberg, P. and Kohn, W., Phys. Rev. 136. B864 (1964).Google Scholar
11. Kohn, W. and Sham, L. J.. Phys. Rev. 140, A1133 (1965).Google Scholar
12. Okada, S. and Saito, S., Phys. Rev. B 59, 1930 (1999); S. Okada, S. Saito. and A. Ohiyanma. Phys. Rev. Lett. 83, 1986 (1999).Google Scholar
13. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1990).Google Scholar
14. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
15. Perdew, J. P. and Zunger, A.. Phys. Rev. B 23, 5048 (1981).Google Scholar
16. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
17. Saito, M.. Sugino, O.. and Oshmiyama, A., Phys. Rev. B 46. 2606 (1992).Google Scholar
18. Umemoto, K., Saito, S.. and Oshivamia, A., Phys. Rev. B 60, 16186 (1999).Google Scholar
19. Kwon, Y.-K., Saito, S., and Tomanek, D., Phys. Rev. B 58, R13314 (1998).Google Scholar
20. Mintmire, J. W., Dunlap, B. J., and White, C. T., Phys. Rev. Lett. 68, 631 (1992)Google Scholar
21. Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
22. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar