Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:57:02.382Z Has data issue: false hasContentIssue false

Electronic and Structural Properties of Carbon Nanotubes Molecular Junction

Published online by Cambridge University Press:  15 March 2011

M. Machado
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
P. Piquini
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
R. Mota
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
A. Fazzio
Affiliation:
Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil Instituto de Física, Universidade de São Paulo, CxP 66318, 05315-970, São Paulo, SP, Brazil
Get access

Abstract

The electronic and structural properties of finite junctions produced by connecting two C nanotubes, saturated with hydrogens in both edges, are investigated using first-principles calculations, through self-consistent field Hartree-Fock-Roothaan method. The main target of our study is a molecular junction, which connects (10,0) and (6,6) tubes by the introduction of pentagon-heptagon pair defects diametrically opposed in the structure. The charge distributions, the character of the highest occupied molecular orbitals and the densities of states are determined for the finite (10,0) and (6,6) nanotubes and for the formed junction. An energetic analysis is also performed using ab-initio approach and empirical Tersoff potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gimzewski, J. K. and Joaquim, C., Science 283, 1683 (1999).Google Scholar
2. Collins, Philip G., Zettl, A., Bando, H., Thess, A. and Smalley, R.E., Science 278, 100 (1997).Google Scholar
3. Charlier, J. C., Ebbesen, T.W. and Lambin, Ph., Phys. Rev. B 53, 11108 (1996).Google Scholar
4. Meunier, V., Henrard, L. and Lambin, Ph., Phys. Rev. B 57, 2586 (1998).Google Scholar
5. Lambin, Ph., Fonseca, A., Vigneron, J.P., Nagy, J.B. and Lucas, A.A., Chem. Phys. Lett. 245, 85 (1995).Google Scholar
6. Chico, L., Crespi, V.H., Benedict, L.X., Loui, S.G. and Cohen, M.L., Phys. Rev. Lett. 76, 971 (1996).Google Scholar
7. Chico, L., Benedict, L.X., Louie, S.G. and Cohen, M.L., Phys. Rev. B 54, 2600 (1996).Google Scholar
8. Itoh, S., Ihara, S. and Kitami, J., Phys. Rev. B 47, 1703 (1993).Google Scholar
9. Ihara, S., Itoh, S. and Kitakami, J. I., Phys. Rev. B 48, 5643 (1993).Google Scholar
10. Stevens, W. J., Basch, H. and Krauss, M., J. Chem. Phys. 81, 6026 (1984).Google Scholar
11. Schmidt, M.W., Baldridge, K.K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M. and Montgomery, J. A., Comput. Chem. 14, 1347 (1993).Google Scholar
12. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
13. Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar