Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T08:38:55.070Z Has data issue: false hasContentIssue false

Electron Transport in the III-V Nitride Alloys

Published online by Cambridge University Press:  10 February 2011

B. E. Foutz
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
S. K. Otleary
Affiliation:
Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
M. S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
L. F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

We study electron transport in the alloys of aluminum nitride and gallium nitride and alloys of indium nitride and gallium nitride. In particular, employing Monte Carlo simulations we determine the velocity-field characteristics associated with these alloys for various alloy compositions. We also determine the dependence of the low-field mobility on the alloy composition. We find that while the low-field mobility is a strong function of the alloy composition, the peak and saturation drift velocities exhibit a more mild dependence. Transient electron transport is also considered. We find that the velocity overshoot characteristic is a strong function of the alloy composition. The device implications of these results are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mohammad, S. N. and Morkoý, H., Prog. Quant. Electron. 20, 361 ( 1996).10.1016/S0079-6727(96)00002-XGoogle Scholar
[2] Shur, M. S. and Khan, M. A., Mater. Res. Bull. 22 (2), 44 ( 1997).10.1557/S0883769400032565Google Scholar
[3] Nakamura, S., Mater. Res. Bull. 22 (2), 29 (1997).10.1557/S088376940003253XGoogle Scholar
[4] Littlejohn, M. A., Hauser, J. R., and Glisson, T. H., Appl. Phys. Lett. 26, 625 ( 1975).10.1063/1.88002Google Scholar
[5] Shur, M., Gelmont, B., and Khan, M. A., J. Electron. Mater. 25, 777 (1996).10.1007/BF02666636Google Scholar
[6] Bhapkar, U. V. and Shur, M. S., J. Appl. Phys. 82, 1649 (1997).10.1063/1.365963Google Scholar
[7] O'Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V., and Eastman, L. F., Solid State Commun. 105, 621 (1998).10.1016/S0038-1098(97)10207-1Google Scholar
[8] Albrecht, J. D., Wang, R. P., Ruden, P. P., Farahmand, M., and Brennan, K. F., J. Appl. Phys. 83, 1446 (1998).10.1063/1.366848Google Scholar
[9] O'Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V., and Eastman, L. F., J. Appl. Phys. 83, 826 (1998).10.1063/1.366641Google Scholar
[10] Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D., and Ruden, P. P., J. Appl. Phys. 85, 916 (1999).10.1063/1.369211Google Scholar
[11] Albrecht, J. D., Wang, R., Ruden, P. P., Farahmand, M., Bellotti, E., and Brennan, K. F., Mater. Res. Symp. Proc. 482, 815 (1998).10.1557/PROC-482-815Google Scholar
[12] Ridley, B. K., Quantum Processes in Semiconductors (Oxford, New York, 1982).Google Scholar
[13] Foutz, B. E., O'Leary, S. K., Shur, M. S., and Eastman, L. F., J. Appl. Phys. ( in press ).Google Scholar
[14] As was pointed out by Albrecht et al. [11], the selection of a specific numerical value for A may be the the subject of considerable debate. Albrecht et al. [11] chose A = 0.01 eV for their nominal selection.Google Scholar
[15] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. (Inspec, London, 1994), pg. 141.Google Scholar
[16] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. ( Inspec, London, 1994), pg. 135.Google Scholar
[17] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. (Inspec, London, 1994), pg. 151.Google Scholar
[18] Foutz, B. E., Eastman, L. F., Bhapkar, U. V., and Shur, M. S., Appl. Phys. Lett. 70, 2849 (1997).10.1063/1.119021Google Scholar
[19] The analysis of Foutz et al. [13] demonstrates that velocity overshoot effects can occur over substantially enhanced distances when the electric field is lower. In particular, for an electric field selection of 210 kV/cm, Figure 2a of Foutz et al. [13] demonstrates that velocity overshoot effects in pure GaN are exhibited over distances in excess of 0.3 Am. We chose 500 kV/cm as AlN does not exhibit velocity overshoot until the electric field in excess of 450 kV/cm, as was demonstrated by Foutz et al. [13].Google Scholar