Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T20:02:35.451Z Has data issue: false hasContentIssue false

Electron Transport in Semiconducting Chiral Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

M. Z. Kauser
Affiliation:
[email protected], Univeristy of Minnesota, Electrical and Computer Engineering, 200 Union St. SE., Room 4-174, Minneapolis, MN, 55455, United States, 612-624-8545
A. Verma
Affiliation:
[email protected], Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA, 30332, United States
P. P. Ruden
Affiliation:
[email protected], Univeristy of Minnesota, Electrical and Computer Engineering, Minneapolis, MN, 55455, United States
Get access

Abstract

We report on electron transport characteristics for semiconducting, single wall, chiral carbon nanotubes. The Boltzmann transport equation is solved indirectly by the Ensemble Monte Carlo method. The basis for the transport calculations is provided by electronic structure calculations within the framework of a simple tight binding model. Scattering mechanisms considered are due to the electron-phonon interactions involving longitudinal acoustic, longitudinal optic, and radial breathing mode phonons. Results show significantly increased Umklapp scattering processes due to the reduced Brillouin zone compared to zigzag nanotubes. This results in increased transient velocity oscillation and negative differential mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graham, A. P., Duesberg, G. S., Hoenlein, W., Kreupl, F., Liebau, M., Martin, R., Rajasekharan, B., Pamler, W., Seidel, R., Steinhoegl, W., and Unger, E., Appl. Phys. A 80, 1141 (2005).Google Scholar
2. Misewich, J. A., Martel, R., Avouris, P., Tsang, J. C., Heinze, S., and Tersoff, J., Science 300, 783 (2003).Google Scholar
3. Perebeinos, V., Tersoff, J., and Avouris, P., Phys. Rev. Lett. 94, 086802 (2005).Google Scholar
4. Pennington, G. and Goldsman, N., Phys. Rev. B 68, 045426 (2003).Google Scholar
5. Verma, A., Kauser, M. Z., and Ruden, P. P., J. Appl. Phys. 97, 114319 (2005).Google Scholar
6. Verma, A., Kauser, M. Z., and Ruden, P. P., Appl. Phys. Lett. 87, 123101 (2005).Google Scholar
7. Kauser, M. Z., Verma, A. and Ruden, P. P., Physica E (in Press).Google Scholar
8. Liu, Z., Zhang, Q., and Qin, L. C., Phys. Rev. B 71, 245413 (2005).Google Scholar
9. Saito, R., Dresselhaus, M. S. and Dresselhaus, G., Physical properties of carbon nanotubes, Imperial College Press, London (1998).Google Scholar
10. Yang, L., Anatram, M. P., Han, J., and Lu, J. P., Phys. Rev. B 60, 13874 (1999).Google Scholar