Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T04:49:58.475Z Has data issue: false hasContentIssue false

Electron Scattering in Buried InGaAs MOSFET Channel with HfO2 Gate Oxide

Published online by Cambridge University Press:  31 January 2011

Serge Oktyabrsky
Affiliation:
[email protected], University at Albany, CNSE, 251 Fuller Road, Albany, 12203, United States, 518-437-8688, 518-437-8687
Padmaja Nagaiah
Affiliation:
[email protected], University at Albany-SUNY, Albany, United States
Vadim Tokranov
Affiliation:
[email protected], University at Albany-SUNY, Albany, United States
Sergei Koveshnikov
Affiliation:
[email protected], Intel, Santa Clara, United States
Michael Yakimov
Affiliation:
[email protected], University at Albany-SUNY, Albany, United States
Rama Kambhampati
Affiliation:
[email protected], University at Albany-SUNY, Albany, United States
Richard Moore
Affiliation:
[email protected], University at Albany-SUNY, Albany, United States
Wilman Tsai
Affiliation:
[email protected], Intel, Santa Clara, United States
Get access

Abstract

Group III-V semiconductor materials are being studied as potential replacements for conventional CMOS technology due to their better electron transport properties. However, the excess scattering of carriers in MOSFET channel due to high-k gate oxide interface significantly depreciates the benefits of III-V high-mobility channel materials. We present results on Hall electron mobility of buried QW structures influenced by remote scattering due to InGaAs/HfO2 interface. Mobility in In0.77Ga0.23As QWs degraded from 12000 to 1200 cm2/V-s and the mobility vs. temperature slope changed from T-1.2 to almost T+1.0 in 77-300 K range when the barrier thickness is reduced from 50 to 0 nm. This mobility change is attributed to remote Coulomb scattering due to charges and dipoles at semiconductor/oxide interface. Elimination of the InGaAs/HfO2 interface via introduction of SiOx interface layer formed by oxidation of thin a-Si passivation layer was found to improve the channel mobility. The mobility vs. sheet carrier density shows the maximum close to 2×1012 cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chau, R., in CS MANTECH Technical Digest, (Chicago, IL 2008), p. 15.Google Scholar
2 Hill, R. J. W., Moran, D. A. J., Li, X., Zhou, H., Macintyre, D., Thoms, S., Asenov, A., Zurcher, P., Rajagopalan, K., Abrokwah, J., Droopad, R., Passlack, M., and Thayne, I. G., IEEE Electron Dev. Lett. 28, 1080 (2007).Google Scholar
3 Xuan, Y., Wu, Y. Q., Lin, H. C., Shen, T., and Ye, P. D., Electron Dev. Lett. 28, 935 (2007).Google Scholar
4 Oktyabrsky, S., Koveshnikov, S., Tokranov, V., Yakimov, M., Kambhampati, R., Bakhru, H., Zhu, F., Lee, J., and Tsai, W., Tech. Dig.- 65th Device Research Conference, 2007, p. 203.Google Scholar
5 Goel, D. H. N., Koveshnikov, S., Ok, I., Oktyabrsky, S., Tokranov, V., Kambhampati, R., Yakimov, M., Sun, Y., Pianetta, P., Gaspe, C.K., Santos, M.B., Lee, J., Majhi, P., and Tsai, W., in Tech. Dig. - Int. Electron Devices Meet. 2008, p.15.1.Google Scholar
6 Matsuoka, T., Kobayashi, E., Taniguchi, K., Hamaguchi, C., and Sasa, S., Jpn. J. Appl. Phys. Part 1 29, 2017 (1990).Google Scholar
7 Negara, M. A., Cherkaoui, K., Majhi, P., Young, C. D., Tsai, W., Bauza, D., Ghibaudo, G., and Hurley, P. K., Microelectron. Eng. 84, 1874 (2007).Google Scholar
8 Barraud, S., Thevenod, L., Casse, M., Bonno, O., and Mouis, M., Microelectron. Eng. 84, 2404 (2007).Google Scholar
9 Maitra, K., Frank, M. M., Narayanan, V., Misra, V., and Cartier, E. A., J. Appl. Phys. 102, 114507 (2007).Google Scholar
10 Oktyabrsky, S., Tokranov, V., Yakimov, M., Moore, R., Koveshnikov, S., Tsai, W., Zhu, F., and Lee, J. C., Mater. Sci. Eng., B 135, 272 (2006).Google Scholar
11 Lee, K., Shur, M. S., Drummond, T. J., and Morkoc, H., J. Appl. Phys. 54, 6432 (1983).Google Scholar