Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T07:24:14.892Z Has data issue: false hasContentIssue false

Electron energy and geometry parameters of InGaAs/GaAs quantum rings: an interpretation of C-V data

Published online by Cambridge University Press:  12 April 2012

I. Filikhin
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
V. M. Suslov
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
M. Wu
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
M. Dukic
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
H. Melikyan
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
B. Vlahovic
Affiliation:
North Carolina Central University, Durham, NC 27707, USA
Get access

Abstract

We investigate the electronic properties of InAs/GaAs quantum rings (QRs) in a magnetic field using an original effective potential model based on a single band kp-approximation with an energy dependent effective mass. We used two sets of geometrical parameters for the selfassembled QRs. The first is the experimentally proposed geometry; the second follows from the oscillator model due to the relation between the model parameters and the real sizes of the quantum objects. The energy of an electron in a magnetic field, calculated for each of the geometries, is compared with C-V experimental data. We show that the results of the calculation obtained for the second geometry fit the experimental data rather well. Interpretation of the recent C-V data given by W. Lei et al. (Appl. Phys. Lett. 96 (2010) 033111) on the basis of the oscillator model is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lei, W., Notthoff, C., Lorke, A., Reuter, D. and Wieck, A. D., Appl. Phys. Lett. 96, 033111 (2010).Google Scholar
2. Lorke, A., Luyken, R. J., Govorov, A. O., and Kotthaus, J. P., Garcia, J.M., Petroff, P. M., Phys. Rev. Lett. 84, 2223 (2000).Google Scholar
3. Emperador, A., Pi, M., Barranco, M., Lorke, A., Phys. Rev. B 62, 4573 (2000).Google Scholar
4. Chakraborty, T. and Pietiläinen, P., Phys. Rev. B 50, 8460 (1994).Google Scholar
5. Szafran, B. and Peeters, F.M., Phys. Rev. B 72, 155316 (2005).Google Scholar
6. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Dvoyan, K.G., Kazaryan, E.M., Sarkisyan, H.A., Derbov, V.L., Klombotskaya, A.S., Serov, V.V., arXiv: 1104.2292.Google Scholar
7. Filikhin, I., Suslov, V. M. and Vlahovic, B., Phys. Rev. B 73, 205332 (2006).Google Scholar
8. Filikhin, I., Suslov, V. M., Wu, M. and Vlahovic, B., Physica E 41, 1358 (2009).Google Scholar
9. Kane, E., J. Phys. Chem. Solids 1, 249 (1957).Google Scholar
10. Schliwa, A., Winkelnkemper, M. and Bimberg, D., Phys. Rev. B 76, 205324 (2007).Google Scholar
11. Viefers, S., Koskinen, P., Singha, D.P., and Manninen, M., Physica E 21, 1 (2004).Google Scholar
12. Voskoboynikov, O., Li, Yiming, Lu, Hsiao-Mei, Shih, Cheng-Feng, and Lee, C. P., Phys. Rev. B 66, 155306 (2002).Google Scholar