Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:47:43.483Z Has data issue: false hasContentIssue false

Electrochemical Investigation of 2, 2′-Dlaminobenzyloxydisulfide

Published online by Cambridge University Press:  10 February 2011

Y. Z. Su
Affiliation:
Polymer Structure & Modification Res. Lab., South China University of Technology, Guangzhou, China 510641, [email protected]
K. C. Gong
Affiliation:
Polymer Structure & Modification Res. Lab., South China University of Technology, Guangzhou, China 510641, [email protected]
Get access

Abstract

A new conducting polymer, poly(2, 2′-diaminobenzyloxydisulfide), has been proposed as a positive material suitable for secondary lithium batteries. With the aim of better understanding the process of polymerization and depolymerization of 2,2′-diaminobenzyloxydisulfide(DABO). The redox behavior, kinetic reversibility and adsorption of DABO have been investigated at platinum electrode in acetonitrile/tetrahydrofuran solution by using linear sweep voltammetry, the cyclic sweep voltammetry and the rotating disk electrode technique. These experiments clearly showed the reaction is chemically reversible but kinetically slow at ambient temperature and charge transfer is the rate-determining step, but chemical dimerizaton is at equilibrium. The results are common to many organic disulfides. Furthermore, the striking observation from cyclic voltammograms is the smaller separation of the anodic and cathodic peak owing to the specific structure of DABO, compared with other organic disulfides. This results indicates the redox reaction of DABO is higher kinetically reversible and poly (DABO) positive material is expected to deliver higher power output or energy efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miller, I. R., Teva, J., J. Electroanal. Chem., 36, p. 157(1972).Google Scholar
2. Fava, A., Reichenbach, G., J. Am. Chem. Soc., 89, p. 6696(1967).Google Scholar
3. Visco, S. J., Jonghe, L. C. De, J. Electrochem. Soc., 135, p. 2905(1988).Google Scholar
4. Visco, S. J., Jonghe, L. C. De, and Amand, M. B., J. Electrochem. Soc., 136, p. 661(1991).Google Scholar
5. Liu, M., Visco, S. J., Jonghe, L. C. De, J. Electrochem. Soc., 138, p. 1891(1991).10.1149/1.2085895Google Scholar
6. Naoi, K., Menda, M., Ooike, H., and Oyama, N., Proc. 31st Bat. Symp. Jpn., p. 31(1990).Google Scholar
7. Naoi, K., Menda, M., Ooike, H., et al. , J. Electroanal. Chem., 318, p. 395(1991)Google Scholar
8. Oyama, N., Pope, J. M., and Sotomura, T., J. Electrochem. Soc., 144, p. L47(1997).Google Scholar
9. Chi, Q., Tatsuma, T., Ozaki, M., et al. , J. Electrochem. Soc., 145, p. 2369(1998).Google Scholar
10. Gong, K. C., Ma, W. S., Mat. Res. Soc. Symp. Proc., 411, p. 351(1996).Google Scholar
11. Ma, W. S., Jia, Z. B., Gong, K. C., China Synthetic Rubber Industry (China), 20, p. 91(1997).Google Scholar
12. Gong, K. C., Ma, W. S., Mat. Res. Soc. Symp. Proc., 461, p. 87(1997).Google Scholar
13. Naoi, K., Kawase, K., Mori, M., et al. J. Electrochem. Soc., 144, p. L173(1997).Google Scholar
14. Naoi, K., Kawase, K., Mori, M., et al. , Mat. Res. Soc. Symp. Proc., 496, p. 309(1998).Google Scholar
15. Su, Y. Z., Ma, W. S., Gong, K. C., Mat. Res. Soc. Symp. Proc., 575, p. (1999).10.1557/PROC-575-403Google Scholar
16. Liu, M., Visco, S. J., Jonghe, L. C. De, J. Electrochem. Soc., 136, p. 2570(1989).Google Scholar
17. Liu, M., Visco, S. J., De Jonghe, L. C., J. Electrochem. Soc., 137, p. 750(1990).Google Scholar
18. Picar, S., Genies, E., J. Electroanal. Chem., 408, p. 53(1996).Google Scholar