Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:55:53.208Z Has data issue: false hasContentIssue false

Electrical Transport through Metal Contacts to In0.53Ga0.47As Thin Films

Published online by Cambridge University Press:  26 February 2011

Pong-Fei Lu
Affiliation:
Department of Electrical Engineering & Computer Science, Princeton University, Princeton, NJ 08544
D. C. Tsui
Affiliation:
Department of Electrical Engineering & Computer Science, Princeton University, Princeton, NJ 08544
H. M. Cox
Affiliation:
Bell Communications Research, Murry Hill, NJ 07974
Get access

Abstract

We report two phenomena observed in the electrical transport through metal contacts to In0.53Ga0.47 As thin films. First, a surface accumulation layer of electrons is found at the oxide-In0.53Ga0.47 As interface of Pb-oxide-In0.53Ga0.47 As tunnel junctions, suggesting that the surface Fermi level is not pinned in In0.53Ga0.47 As, and ideal ohmic contacts to n- In0 53Ga0.47 As can be made by using low work function metals. Second, we observed a strong oscillatory conductance on the I-V characteristic of electrical transport through In- In0.53 Ga0.47As contacts, with a period approximating the LO-phonon energy of In0.53Ga0.47As. We explain the data by successive phonon emission in the high field transport of ballistic electrons and point out that the experiment is a solid state analogue of the Franck-Hertz experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Cox, H. M., J. Crystal Growth 69, (1984).Google Scholar
(2) Mullin, Donald P. & Wieder, H. H., J. Vac. Sci. Technol. B 1 (3), 782 (1983)-Google Scholar
(3) Hsieh, K. H., Hollis, M., Wicks, G., Wood, C. E. C. and Eastman, L. F. in “GaAs and Related Compounds 1982” (Institute of Physics, Alberquerque, 1983), p. 165.Google Scholar
(4) Kajiyama, K., Mizushima, Y., and Sataka, S., Appl. Phys. Lett. 23, 458 (1973).Google Scholar
(5) Tsui, D. C., Phys. Rev. B 4, 4438 (1971); 8, 2657 (1973).Google Scholar
(6) Lu, Pong-Fei, Tsui, D. C. and Cox, H. M., Appl. Phys. Lett. 45, 772 (1984).CrossRefGoogle Scholar
(7) Hall, R. N., Racette, J. A. and Ehrenreich, H., Phys. Rev. Lett. 4, 456 (1960).Google Scholar
(8) Appelbaum, J. A. and Brinkman, W. F., Phys. Rev. 186, 464 (1969).Google Scholar
(9) BenDaniel, D. J. and Duke, C. B., Phys. Rev. 160, 679 (1967).10.1103/PhysRev.160.679Google Scholar
(10) Pinczuk, A., Worlock, J. M., Nahory, R. E., and Pollack, M. A., Appl. Phys. Lett. 33, 461 (1978).Google Scholar
(11) Brummell, M. A., Nicholas, R. J., Portal, J. C., Razeghi, M. and Possion, A., Physica B 117, 118, 753 (1983).10.1016/0378-4363(83)90643-5CrossRefGoogle Scholar
(12) Kulik, I. O. and Shekhter, R. I., Phys. Lett. 98A, 132 (1983).Google Scholar
(13) See, for example, Peaslee, D. C., “Elements of Atomic Physics” (Prentice Hall, 1955), p. 158.Google Scholar
(14) Katayama, Y. and Komatsubara, K., Phys. Rev. Lett. 19, 1421 (1967).Google Scholar
(15) Cavenett, C. B., Phys. Rev. B 5, 3049 (1972).Google Scholar
(16) Hickmott, T. W., Solomon, P. W., Fang, F. F., Stern, Frank, Fischer, R. and Morkoc, H., Phys. Rev Lett. 52, 2053 (1984).Google Scholar