Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T11:07:59.376Z Has data issue: false hasContentIssue false

Electrical Study of Device Arrays on Thin Film Vanadium Dioxide

Published online by Cambridge University Press:  26 February 2011

Ramesh G. Mani
Affiliation:
[email protected], Georgia State University, Department of Physics and Astronomy, 29 Peachtree Center Avenue, Atlanta, GA, 30303, United States, 404 463 9633, (404) 651-1427
S. Ramanathan
Affiliation:
[email protected], Harvard University, DEAS-Division of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, United States
V. Narayanamurti
Affiliation:
[email protected], Harvard University, DEAS-Division of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, MA, 02138, United States
Get access

Abstract

The VO2 phase of vanadium oxide is known to exhibit large changes in the electrical and optical properties in the vicinity of the structural phase transition at 68C. Here, we report on the fabrication and study of thin film vanadium oxide (VO2) devices deposited on R-plane sapphire. Thin films prepared by electron beam evaporation have been processed by photolithography into two-terminal strips for electrical measurements. Measurements on such specimens exhibit reproducibility across a chip, in addition to hysteretic transport, and a one-to-two orders of magnitude change in the resistance in the vicinity of the structural transition. In sum, these experiments show that e-beam evaporation of VO2 constitutes a simple and useful approach to realizing devices from this technologically important material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
2. Adler, D., Rev. Mod. Phys. 40, 714 (1968).Google Scholar
3. Mott, N. F., Rev. Mod. Phys. 40, 677 (1968).Google Scholar
4. Berglund, C. N. and Guggenheim, H. J., Phys. Rev. 185, 1022 (1969).Google Scholar
5. Vikhnin, V. S., Lysenko, S., Rua, A., Fernandez, F., and Liu, H., Phys. Lett. A 343, 446 (2005).Google Scholar
6. Golan, G., Axelevitch, A., Sigalov, B., and Gorenstein, B., J. Optoelect. and Adv. Materials 6, 189 (2004).Google Scholar
7. Boriskov, P. P., Velichko, A. A., and Stefanovich, G. B., Phys. Sol. St. 46, 922 (2004).Google Scholar
8. Kim, H-T, Chae, B-G., Young, D-H., Kim, G., and Kang, K-Y., Appl. Phys. Lett. 86, 242101 (2005).Google Scholar
9. Becker, M. F., Beckman, A. B., Walser, R. M., Lepine, T., Georges, P., Brun, A., Appl. Phys. Lett. 65, 1507 (1994).Google Scholar
10. Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C., and Haglund, R. F., Jr., Opt Lett. 27, 1327 (2002).Google Scholar
11. Cavalleri, A., Dekorsy, Th., Chong, H. H. W., Kiefferr, J. C., and Schoenlein, R. W., Phys. Rev. B 70, 161102 (2004).Google Scholar
12. Rini, M. et al., Opt. Lett., 30, 558 (2005).Google Scholar
13. Newns, D. M. et al., J. of Electroceramics 4, 339 (2000).Google Scholar
14. Bialas, H., Dillenz, A., Dowmar, H., and Ziemann, P., Thin Solid Films 338, 60 (1999).Google Scholar
15. Lopez, R., Haynes, T.E., Boatner, L. A., Feldman, L. C., and Haglund, R. F., Jr., Phys. Rev. B 65, 224113 (2002).Google Scholar