Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T19:25:18.842Z Has data issue: false hasContentIssue false

Electrical domains and sub-millimeter signal generation in AlGaN/GaN superlattices

Published online by Cambridge University Press:  01 February 2011

Irina Gordion
Affiliation:
[email protected], WaveBand Corp, United States
Alexander Manasson
Affiliation:
[email protected], University of Michigan, Ann Arbor, Physics Department, United States
Vladimir Litvinov
Affiliation:
[email protected], WaveBand Corp, United States
Get access

Abstract

The paper discusses the feasibility of a terahertz-signal source made of AlGaN/GaN superlattice. Negative differential conductivity, electrical domain formation, current oscillations, and power efficiency of a perspective source are described. We relate the superlattice geometry and conduction band profile, distorted by polarization fields, to the oscillation frequency and power efficiency of the device. We also determine the optimal Al content, superlattice period, and the parameters of external circuit that favor sub-millimeter wave generation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Esaki, L. and Tsu, R., IBM J. Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
2. Schomburg, E., Scheuerer, R., Brandl, S., Renk, K.F., Pavel'ev, D.G., Koschurinov, Yu., Ustinov, V., Zhukov, A., Kovsch, A., and Kop'ev, P.S., Electron. Lett., 35, 1491 (1999).CrossRefGoogle Scholar
3. Schomburg, , Brandl, S., Hofbeck, K., Bloemeier, T., Grenzer, J., Ignatov, A.A., Renk, K.F., Pavel'ev, D.G., Koschurinov, Yu., Ustinov, V., Zhukov, A., Kovsch, A., Ivanov, S., and Kop'ev, P.S., Appl. Phys. Lett., 72, 1498 (1998).CrossRefGoogle Scholar
4. Kroemer, H., cond.-mat./0009311 (2000).Google Scholar
5. Litvinov, V.I., Manasson, V.A., Sadovnik, L., Proc. SPIE 4111, 116 (2000).CrossRefGoogle Scholar
6. Litvinov, V.I., Manasson, A., and Pavlidis, D., Appl. Phys. Lett. 85, 600 (2004).CrossRefGoogle Scholar
7. Ignatov, A.A. and Shashkin, V. I., Phys. Lett. 94A, 169 (1983);CrossRefGoogle Scholar
Romanov, Yu., Murokh, L.G., and Horing, N.J.M., J. Appl. Phys. 93, 4696 (2003).CrossRefGoogle Scholar
8. Litvinov, V.I., Manasson, A., Phys. Rev. B 70, 195323 (2004); Superlatt. and Microstruct. 37, 217 (2004).CrossRefGoogle Scholar
9. Desmaris, V., Eriksson, J., Rorsman, N., and Zirath, H., Electrochem. & Solid State Lett. 7, G72 (2004).CrossRefGoogle Scholar
10. Scheuerer, R., Schomburg, E., Renk, K., Wacker, A., and Scholl, E., Appl. Phys. Lett. 81, 1515 (2002).CrossRefGoogle Scholar
11. Gruzinskis, V., Shiktorov, P., Starikov, E., and Zhao, J. H., Semicond. Sci. Technol. 16, 708 (2001).CrossRefGoogle Scholar