Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T11:54:46.403Z Has data issue: false hasContentIssue false

Electric Field Mediated Ion Transport Through Charged Mesoporous Membranes

Published online by Cambridge University Press:  11 February 2011

Riaan Schmuhl
Affiliation:
MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
W. B. Samuel de Lint
Affiliation:
MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Klaas Keizer
Affiliation:
MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Albert van den Berg
Affiliation:
MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Johan E. ten Elshof
Affiliation:
MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Get access

Abstract

The transport of ions from aqueous solutions through a stacked Au/α-Al2O3/γ-Al2O3/Au membrane under the influence of a dc potential difference is reported. The membrane shows high cation permselectivity at ionic strengths of ∼10-3 M at pH 4.3–6.5, which is associated with a combination of anion adsorption and double-layer overlap inside the pores of the γ-alumina layer. The cation flux can be controlled by ionic strength, dc potential difference and pH.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Micro Total Analysis Systems 2000, ed. van den Berg, A., Olthuis, W. and Bergveld, P., (Kluwer, 2000).Google Scholar
2. Nishizawa, M., Menon, V.P. and Martin, C.R., Science 268, 700 (1995).Google Scholar
3. Kemery, P.J., Steehler, J.K. and Bohn, P.W., Langmuir 14, 2884 (1998).Google Scholar
4. Kuo, T.-C., Sloan, L.A., Sweedler, J.V. and Bohn, P.W., Langmuir 17, 6298 (2001).Google Scholar
5. Bluhm, E.A., Bauer, E., Chamberlin, R.M., Abney, K.D., Young, J.S. and Jarvinen, G.D., Langmuir 15, 8668 (1999).Google Scholar
6. Benes, N., Nijmeijer, A. and Verweij, H., “Microporous silica membranes,” Recent advances in gas separation by microporous ceramic membranes, ed. Kanellopoulos, N.K., (Elsevier, 2000) pp. 335372.Google Scholar
7. Cao, G.Z., Meijerink, J., Brinkman, H.W. and Burggraaf, A.J., J. Membr. Sci. 83, 221 (1993).Google Scholar
8. Hunter, R.J., Foundations of Modern Colloid Science, (Oxford University Press, 2001).Google Scholar
9. Reyes Bahena, J.L., Roblero Cabrera, A., Lopez Valdivieso, A. and Herrera Urbina, R., Sep. Sci. Tech. 37, 1973 (2002).Google Scholar
10. Li, Y.-H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D. and Wei, B., Chem. Phys. Let. 350, 412 (2001).Google Scholar
11. Crisenti, L.J. and Sverjensky, D.A., Am. J. Sci. 299, 828 (1999).Google Scholar
12. Trivedi, P. and Axe, L., Environ. Sci. Technol. 35, 1779 (2001).Google Scholar
13. Wei, C., Bard, A.J. and Feldberg, S.W., Anal. Chem. 69, 4627 (1997).Google Scholar