Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T15:24:11.716Z Has data issue: false hasContentIssue false

Elastic Properties of FeNi/Cu and FeNi/Nb Metallic Superlattices Investigated by Brillouin Light Scattering

Published online by Cambridge University Press:  15 February 2011

G. Carlotti
Affiliation:
Dipartimento di Fisica, Unità INFM, Università di Perugia, Via Pascoli, 06100 Perugia, Italy
G. Socino
Affiliation:
Dipartimento di Fisica, Unità INFM, Università di Perugia, Via Pascoli, 06100 Perugia, Italy
Hua Xia
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, 210008 Nanjing P.R.China
An Hu
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, 210008 Nanjing P.R.China
S. S. Jiang
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, 210008 Nanjing P.R.China
Get access

Abstract

The Brillouin light scattering technique has been exploited in order to investigate the elastic properties of periodic superlattices consisting of alternating layers of Fe20Ni80 (permalloy) and either Cu or Nb. These multilayers, with total thicknesses ranging between 0.2 and 0.7 mm and with periods of typically 3-5 nm, present a polycrystalline structure with (110) texture for the Nb layers and (111) texture for both the FeNi and Cu layers. Measurement of the frequency position of the Brillouin peaks corresponding to the Rayleigh and Sezawa acoustic modes allowed the effective elastic constants of these structures to be determined. The values obtained are compared with those calculated from the elastic constants of the bulk materials, taking into account the polycrystalline nature of the superlattices and the crystallographic orientation of the layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grimsditch, M., in Light Scattering in Solids V, edited by Cardona, M. and Guntherodt, G. (Springer, Berlin, 1989), p. 285 Google Scholar
[2] Bell, J.A., Bennet, W.R., Zanoni, R., Stegeman, G.I., Falco, CM. and Seaton, C.T., Solid State Commun. 64, 1339 (1987)Google Scholar
[3] Carlotti, G., Fioretto, D., Palmieri, L., Socino, G., Verdini, L., Xia, H., Hu, A., Zhang, X.K., Phys. Rev. B, 46, 12777 (1992)Google Scholar
[4] Danner, R., Huebener, R.P., Chun, C.S.L., Grimsditch, M. And Schuller, I.K., Phys. Rev. B, 33, 3696 (1986)Google Scholar
[5] Khan, R., Chun, C.S.L., Felcher, G.B., Grimsditch, M., Kueny, A., Falco, C.M. and Schuller, I.K., Phys. Rev. B, 27, 7186 (1983)Google Scholar
[6] Bell, J.A., Bennet, W.R., Zanoni, R., Stegeman, G.I., Falco, C.M. and Nizzoli, F., Phys. Rev. B, 35, 4127 (1987)Google Scholar
[7] Hillebrandt, B., Krams, P., Sporl, K. and Weller, D., J. Appl. Phys., 69, 938 (1991)Google Scholar
[8] Carlotti, G., Fioretto, D., Socino, G., Rodmacq, B. and Pelosin, V., J. Appl. Phys., 71, 4897 (1992); G. Carlotti, D. Fioretto, L. Giovannini, G. Socino, V. Pelosin and B. Rodmacq, Solid State Commun. 6, 487 (1992)Google Scholar
[9] Dutcher, J R., Lee, S., Kim, J., Stegeman, G.I. and Falco, C.M., Phys. Rev. Lett., 65, 1231 (1990)Google Scholar
[10] Xia, Hua,) Zhang, X.K., Hu, An, Jiang, S.S., Peng, R.W., Zhuang, Wei, Feng, Duan, Carlotti, G., Fioretto, D., Socino, G. and Verdini, L., Phys. Rev. B, 47, (1993); G. Carlotti, G. Socino, An Hu, Hua Xia and S.S. Jiang, J. Appl. Phys., 75 (1994)Google Scholar
[11] Pickett, W.E., J. Phys. F: Met. Phys., 12, 2195 (1982)Google Scholar
[12] Jankowski, A F., J. Phys. F 18, 413 (1988)Google Scholar
[13] Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett., 62, 2005 (1989)Google Scholar
[14] Huberman, M L. and Grimsditch, M., Phys. Rev. B, 62, 1403 (1989)Google Scholar
[15] Jaszczak, J.A., Phillipot, S.R. and Wolf, D., J. Appl. Phys., 68, 4573 (1990)Google Scholar
[16] A comprehensive phenomenological model has been recently proposed by Grimsditch, M., Fullerton, E.E. and Schuller, I.K., Mat. Res. Soc. Proa, Vol. 308, (1993), p. 685 Google Scholar
[17] Carlotti, G., Fioretto, D., Palmieri, L., Socino, G., Verdini, L. and Verona, E., IEEE Transaction on Son. Ultrason. and Freq. Control, 38, 56 (1991)Google Scholar
[18] Nizzoli, F. and Sandercock, J.R., in Dynamical Properties of Solids, edited by Horton, G.K. and Maradudin, A. A. (North-Holland, Amsterdam, 1990), Vol. 6, p 307 Google Scholar
[19] Musgrave, M.J.P., Crystal Acoustics. (Holden Day, San Francisco, 1970), p. 177 Google Scholar
[20] Landolt-Bornstein, Numerical Data, New Series, Group III (Springer, Berlin, 1979), Vol. 11, p.79 Google Scholar
[21] Grimsditch, M and Nizzoli, F., Phys. Rev. B, 33, 5891 (1986)Google Scholar
[22] Farnell, G.W. and Adler, E L, in Physical Acoustics, edited by Mason, W.P. and Thurston, R.N. (Academic, New York, 1972), Vol. 9, p.35 Google Scholar
[23] Baumgart, P., Hillebrands, B., Mock, R., Guntherodt, G., Boufelfel, A. and Falco, C.M., Phys. Rev. B, 34, 9004 (1986)Google Scholar
[24] Mattson, J., Bhadra, R., Ketterson, J.B.. Brodsky, M. and Grimsditch, M., J. Appl. Phys., 67, 2873 (1990)Google Scholar
[25] Moreau, A., Ketterson, J.B. and Davis, B., J. Appl. Phys., 68, 1622 (1990)Google Scholar
[26] Dutcher, J.R., Lee, S., England, C.D., Stegeman, G.I. and Falco, C.M., Mat. Sci. Eng. A126, 13 (1990)Google Scholar