Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T02:08:34.262Z Has data issue: false hasContentIssue false

Elastic Constants and Graphitic Grain Boundaries of Nanocrystalline CVD-Diamond Thin Films: Resonant Ultrasound Spectroscopy and Micromechanics Calculation

Published online by Cambridge University Press:  01 February 2011

Hirotsugu Ogi
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Nobutomo Nakamura
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Hiroshi Tanei
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Ryuji Ikeda
Affiliation:
Asahi Diamond Ind Co Ltd, Res & Dev, Chiba 290-0515, Japan Faculty of Science and Engineering, Aoyama Gakuin University, Kanagawa 229-8558, Japan
Masahiko Hirao
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Mikio Takemoto
Affiliation:
Faculty of Science and Engineering, Aoyama Gakuin University, Kanagawa 229-8558, Japan
Get access

Abstract

Using resonant-ultrasound spectroscopy coupled with laser-Doppler interferometry, we determine the independent elastic constants of nanocrystalline CVD-diamond thin films with thickness between 2-12 μm. They are deposited on oriented monocrystal silicon substrates by the hot-filament methane/nitrogen CVD method. The diagonal components of the elastic constants are smaller than those of microcrystalline CVD diamond films and bulk diamond. However, the off-diagonal component is larger. We attribute these observations to the presence of sp2-bonded graphitic phase at grain boundaries. A micromechanics model assuming inclusions of thin graphitic plates consistently explains the observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., Chang, R. P. H., and Gnaser, H., J. Appl. Phys. 82, 4546 (1997).Google Scholar
2. Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J. A., Curtiss, L. A., Goyette, A. N., Gruen, D. M., Krauss, A. R., Schlueter, J., Sumant, A., and Zapol, P., Appl. Phys. Lett. 79, 1441 (2001).Google Scholar
3. Birrell, James, Carlisle, J. A., Auciello, O., and Gibson, J. M., Appl. Phys. Lett. 81, 2235 (2002).Google Scholar
4. Birrell, James, Gerbi, J. E., Auciello, O., Gibson, J. M., Gruen, D. M., and Carlisle, J. A., J. Appl. Phys. 93, 5606 (2003).Google Scholar
5. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
6. Ogi, H., Sato, K., Asada, T., and Hirao, M., J. Acoust. Soc. Am. 112, 2553 (2002).Google Scholar
7. Nakamura, N., Ogi, H., and Hirao, M., Acta Mater. 52, 765 (2004).Google Scholar
8. Nakamura, N., Ogi, H., Ono, T., and Hirao, M., Appl. Phys. Lett. 86 (2005), in press.Google Scholar
9. Ohno, I., J. Phys. Earth 24, 355 (1976).Google Scholar
10. Migliori, A and Sarrao, J., Resonant Ultrasound Spectroscopy (Wiley-Interscience, New York, 1997).Google Scholar
11. Ledbetter, H., Fortunko, C., and Heyliger, P., J. Appl. Phys. 78, 1542 (1995).Google Scholar
12. Anderson, O. L., in Physical Acoustics, Vol. IIIB, ed. Mason, W. P. (Academic, New York, 1965), p. 43.Google Scholar
13. Ogi, H., Kai, S., Ledbetter, H., Tarumi, R., Hirao, M., and Takashima, K., Acta Mater. 52, 2075 (2004).Google Scholar