Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T03:58:34.843Z Has data issue: false hasContentIssue false

Effects of Surfaces on the Melting/Freezing Behavior of Fluids in Derivatized- and Nude-Porous Silica

Published online by Cambridge University Press:  15 February 2011

V. K. Malhotra
Affiliation:
Department of Physics, Southern Illinois University at Carbondale, Carbondale, Illinois 62901-4401
R. Mu
Affiliation:
Fisk Center, Fisk University, Nashville, TN 37208
A. Natarajan
Affiliation:
Department of Physics, Southern Illinois University at Carbondale, Carbondale, Illinois 62901-4401
Get access

Abstract

Comparative differential scanning calorimetry (DSC) measurements were made at 200 K < T < 310 K on geometrically restricted cyclohexane and n-decane in nude-, trimethyl derivatized-, and hexyl derivatized-porous (Rp = 4 nm) silica with a view to determine how the surface structure of the confining media affects the thermodynamic behavior of the restricted fluid. Our results suggest that, irrespective of the fact that both trimethyl derivatized- and hexyl derivatized-silica have methyl terminal groups, the freezing or melting transition of cyclohexane is much more depressed in trimethyl derivatized-silica than in hexyl derivatized- or nude-silica. This is not the case for n-decane where the depression in the melting transition is consistent with the fact that the effective pore radius of the hexyl derivatized-silica is smaller than the trimethyl derivatized- or nude-silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Warnock, J., Awschalom, D. D., and Shafer, M. W., Phys. Rev. Lett. 57, 1753 (1986); D. D. Awschalom and J. Warnock, in Molecular Dynamics in Restricted Geometries, eds. J. Klafterand J. M. Drake (Wiley, New York, 1989), pp 351–369.Google Scholar
2. Drake, J. M. and Klafter, J., Physics Today 43(5), 46 (1990).Google Scholar
3. Iannacchione, G. S. and Finotello, D., Phys. Rev. Lett. 69, 2094 (1992).Google Scholar
4. Mu, R. and Malhotra, V. M., Phys. Rev. B 44, 4296 (1991).Google Scholar
5. Mu, R. and Malhotra, V. M., Phys. Rev. B 46, 532 (1992).Google Scholar
6. Goldstein, A. N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).Google Scholar
7. Jackson, C. L. and McKenna, G., J. Chem. Phys. 93, 9002 (1990).Google Scholar
8. Torii, R. H., Marns, H. J., and Seidel, G. M., Phys. Rev. B 41, 7167 (1990).Google Scholar
9. Ma, W-J., Banavar, J., and Koplik, J., J. Chem. Phys. 97, 485 (1992).Google Scholar
10. Brodka, A. and Zerda, T. W., J. Chem. Phys. 97, 5676 (1992).Google Scholar
11. Awschalom, D. D. and Warnock, J., Phys. Rev. B 35, 6779 (1987).Google Scholar
12. Chui, S. T., Phys. Rev. B 43, 11523 (1991).Google Scholar
13. Brewer, D. F., Rajendra, J., Sharma, N., Thomson, A. L., and Xin, J., Physica B 165 & 166, 551 (1990).Google Scholar
14. Liu, G., Li, Y., and Jonas, J., J. Chem. Phys. 95, 6892 (1991).Google Scholar
15. Jasty, S. and Malhotra, V. M., Phys. Rev. B 45, 1 (1992).Google Scholar