Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T10:07:10.777Z Has data issue: false hasContentIssue false

Effects of Substrate Bias on the Nucleation of Diamond Films Studied by Atomic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

G. Sánchez
Affiliation:
Dept. Física Aplicada i Electrònica, Av. Diagonal 647, E-08028 Barcelona, Spain.
M. C. Polo
Affiliation:
Dept. Física Aplicada i Electrònica, Av. Diagonal 647, E-08028 Barcelona, Spain.
W. L. Wang
Affiliation:
Dept. Física Aplicada i Electrònica, Av. Diagonal 647, E-08028 Barcelona, Spain.
J. Esteve
Affiliation:
Dept. Física Aplicada i Electrònica, Av. Diagonal 647, E-08028 Barcelona, Spain.
Get access

Abstract

The nucleation stage of diamond on silicon substrates was studied by atomic force microscopy. Samples were grown by hot filament chemical vapor deposition and substrate biases from -200 ν to +75 ν were investigated. The effects of the process on the substrate as well as on the morphology of the crystallites were observed using an atomic force microscope operating in tapping mode. It was observed that both the density and morphology of the diamond crystallites were greatly dependent on the applied bias values. The highest nucleation density was achieved for the -200 ν bias, when a plasma around the substrate holder was formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yugo, S., Kanai, T., Kimura, T. and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).Google Scholar
2. Jiang, X., Klages, C.-P., Zachai, R., Hartweg, M. and Fusser, H.-J., Appl. Phys. Lett. 62, 3438 (1993).Google Scholar
3. Lee, Y. H., Richard, P. D., Bachmann, K. J. and Glass, J. T., Appl. Phys. Lett. 56, 1853 (1995).Google Scholar
4. Dotty, F. P. and Jesser, W. A., J. Electron. Mater. 20, 121 (1991).Google Scholar
5. Zhu, W., Sivazlian, F. R., Stoner, B. R. and Glass, J. T., J. Mater. Res. 10, 425 (1995).Google Scholar
6. Chen, Q., Yang, J. and Lin, Z., Appl. Phys. Lett. 67, 1853 (1995).Google Scholar
7. Yugo, S., Kimura, T. and Kanai, T., Diamond Relat. Mater. 2, 328 (1992).Google Scholar
8. Stoner, B. R., Ma, G. H., Wolter, S. D., Zhu, W., Wang, Y.-C., Davis, R. F. and Glass, J. T., Diamond Relat. Mater. 2, 142 (1993).Google Scholar
9. Robertson, J., Gerber, J., Sattel, S., Weiler, M., Jung, K. and Ehrhardt, H., Appl. Phys. Lett. 66, 3287 (1995).Google Scholar
10. Zhoj, Q., Inniss, D., Kjoller, K. and Ellings, V. B., Surf. Sci. Lett. L 688, 290 (1993).Google Scholar
11. Sánchez, G., Servat, J., Gorostiza, P., Polo, M. C., Wang, W. L. and Esteve, J., Diamond Relat. Mater. (in press).Google Scholar
12. Dennig, P. A. and Stevenson, D. A., Appl. Phys. Lett. 59, 1562 (1991).Google Scholar