Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T03:25:22.587Z Has data issue: false hasContentIssue false

Effects of GaN template annealing on the optical and morphological quality of the homoepitaxially overgrown GaN layer

Published online by Cambridge University Press:  01 February 2011

James Grandusky
Affiliation:
[email protected], University at Albany, College of Nanoscience and Nanoengineering, 255 Fuller Road, Albany, NY, 12203, United States, 518-442-2576, 518-437-8687
Vibhu Jindal
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, United States
Muhammad Jamil
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, United States
Fatemeh Shahedipour-Sandvik
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering
Get access

Abstract

Growth of GaN based devices such as light emitting diodes and laser diodes often occurs on already prepared GaN templates grown on native (e.g. bulk GaN) and non-native (e.g. sapphire) substrates. High temperature annealing methods that are generally used for growth on other substrates cannot be completed on GaN templates due to the decomposition at temperatures above 800 °C in hydrogen rich ambient. The decomposition rate is higher than the Ga desorption rate from the surface under most conditions and causes Ga droplets to form on the surface which can hinder further growth. The effect of the annealing conditions on the GaN homoepitaxy on GaN templates is presented. In-situ annealing conditions were developed for annealing the GaN templates to remove any contamination while preventing significant Ga droplets from accumulating on the surface in both H2 and N2 environments to obtain optimized annealing conditions. As measured by AFM the RMS roughness of the GaN surfaces increases upon annealing, but becomes similar to the starting template after 1 μm, indicating complete recovery. The optical quality of the homoepitaxially overgrown layers as measured by PL shows improved band edge luminescence and band edge to yellow band ratio for annealing in H2 while it degrades for annealing in N2 only. Hall measurements show superior characteristics for annealing in H2 as well. These results will be especially important because bulk substrates are subjected to polishing damage that is known to negatively affect the surface condition and initial growth nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grzegory, I., Boćkowski, M., Łucznik, B., Porowski, S., J. Ceramic Proc. Res., 6 (2), 118128, (2005).Google Scholar
2 Vaudo, R. P., Xu, X., Loria, C., Salant, A. D., Flynn, J. S., Brandes, G. R., Phys. Stat. Sol. (a)., 194 (2), 494497, (2002).Google Scholar
3 Gogova, D., Larsson, H., Kasic, A., Yazdi, G. R., Ivanov, I., Yakimova, R., Monemar, B., Aujol, E., Frayssinet, E., Faurie, J., Beaumont, B., Gibart, P., Jpn. J. Appl. Phys., 44 (3) 11811185 (2005).CrossRefGoogle Scholar
4 Grandjean, N., Massies, J., Grzegory, I. and Porowski, S., Semicond. Sci. Technol., 16, 358361, (2001).CrossRefGoogle Scholar
5 Cao, X.A., Yan, C.H., D'Evelyn, M.P., LeBoeuf, S.F., Kretchmer, J.W., Klinger, R., Arthur, S.D., Merfeld, D.W., J. Cryst. Growth, 269, 242248, (2004).CrossRefGoogle Scholar
6 Figge, S., Dennemarck, J., Alexe, G., Hommel, D., Mater. Res. Soc. Symp. Proc., 831, E11.36.1-E11.36.6, (2005).Google Scholar
7 Koleske, D.D., Wickenden, A.E., Henry, R.L., Culbertson, J.C., Twigg, M.E., J. Cryst. Growth, 223, 466483, (2001).CrossRefGoogle Scholar
8 Porowski, S., J. Cryst. Growth, 189/190, 153158, (1998).Google Scholar
9 Schauler, M., Eberhard, F., Kirchner, C., Schwegler, V., Pelzmann, A., Kamp, M., Ebeling, K. J., Bertram, F., Riemann, T., and Christen, J., Prystawko, P., Leszczynski, M., Grzegory, I., Porowski, S., Appl. Phys. Lett., 74 (8), 11231125, (1999).CrossRefGoogle Scholar
10 Miskys, C. R., Kelly, M. K., Ambacher, O., Martı'nez-Criado, G., Stutzmann, M., Appl. Phys. Lett., 77 (12), 18581860, (2000).CrossRefGoogle Scholar
11 Myers, T. H., VanMil, B. L., Holbert, L. J., Peng, C. Y., Stinespring, C. D., Alam, J., Freitas, J. A. Jr., Dmitriev, V. A., Pechnikov, A., Shapovalova, Y., Ivantsov, V., J. Cryst. Growth, 246, 244251, (2002).CrossRefGoogle Scholar
12 Nowak, G., Krukowski, S., Grzegory, I., Porowski, S., Baranowski, Jacek M., Pakula, K., Zak, J., MRS Int. J. Nit. Semi., 1, Article 5, (1996).Google Scholar
13 Miskys, C. R., Kelly, M. K., Ambacher, O., and Stutzmann, M., Phys. Stat. Sol. (c), 0 (6), 16271650, (2003).CrossRefGoogle Scholar
14 Jamil, M., Grandusky, J. R., Shahedipour-Sandvik, F., Mater. Res. Soc. Symp. Proc., 831, E1.8.1-E1.8.6, (2005).Google Scholar
15 Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P., Speck, J. S., Appl. Phys. Lett., 68, 643 (1996).CrossRefGoogle Scholar
16 Pakula, K., Bozek, R., Baranowski, J. M., Jasinski, J., and Liliental-Weber, Z., J. Cryst. Growth, 267, 17, (2004).CrossRefGoogle Scholar