Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:49:28.309Z Has data issue: false hasContentIssue false

Effects of Ad-atom Diffusivity Throughout Sb-Mediated Formation of Ge/Si Nanoislands

Published online by Cambridge University Press:  19 April 2012

Alexander A. Tonkikh
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany Institute for Physics of Microstructures RAS, Nizhniy Novgorod, GSP-105, Russia
Nikolay D. Zakharov
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany
Alexandra A. Suvorova
Affiliation:
Centre for Microscopy, Characterisation and Analysis, the University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
Peter Werner
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany
Get access

Abstract

The effect of Sb on the formation of Ge nano islands in Si by means of molecular beam epitaxy is reported. We observe in the Ge/Si(100) system a non-monotonic dependence of the Stranski-Krastanov critical thickness of Ge islands formation on the adsorbed Sb amount. Dome- and hut-shaped Ge islands are replaced with the pyramids, when Ge is deposited on the Sb-covered Si(100) surface. The Sb-mediated conservation of the shape of Ge islands during embedding them in Si is shown. We assume that the decrease of the surface diffusion of Si and Ge ad-atoms causes these effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsybeskov, L., Lockwood, D.J., Proceedings of the IEEE, 97, 1284 (2009).Google Scholar
2. Eberl, K., Schmidt, O. G., Duschl, R., Kienzle, O., Ernst, E., and Rau, Y., Thin Solid Films, 369, 33 (2000).Google Scholar
3. Brunhes, T., Boucaud, P., Sauvage, S., Aniel, F., Lourtioz, J.-M., Hernandez, C., Campidelli, Y., Kermarrec, O., Bensahel, D., Faini, G., and Sagnes, I., Appl.Phys.Lett., 77, 1822 (2000).Google Scholar
4. Tonkikh, A., Zakharov, N., Talalaev, V., and Werner, P., Phys. Stat. Sol. RRL 4, 224 (2010).Google Scholar
5. Tonkikh, A.A., Zakharov, N.D., Novikov, A.V., Kudryavtsev, K.E., Talalaev, V.G., Fuhrmann, B., Leipner, H.S., Werner, P., Thin Solid Films 520, 3322 (2012).Google Scholar
6. Tonkikh, A.A., Cirlin, G.E., Dubrovskii, V.G., Ustinov, V.M., and Werner, P., Semiconductors 38, 1202 (2004).Google Scholar
7. Barnett, S.A., Winters, H.F., Greene, J.E., Surf. Sci. 165, 303 (1986).Google Scholar
8. Voigtlander, B. and Zinner, A., J. Vac. Sci. Technol. A, 12, 1932 (1994).Google Scholar
9. Portavoce, A., Berbezier, I., and Ronda, A., Phys.Rev.B 69, 155416 (2004).Google Scholar
10. Sutter, P., Lagally, M.G., Phys. Rev. Lett. 81, 3471 (1998).Google Scholar
11. Zak, M., Laval, J-Y., Dłuzewski, P.A., Kreta, S., Yamc, V., Bouchier, D., Fossard, F., Micron 40, 122 (2009).Google Scholar
12. Vandervelde, T.E., Sun, K., Merz, J.L., Kubis, A., Hull, R., Pernell, T.L., Bean, J.C., J. Appl. Phys. 99, 124301 (2006).Google Scholar