Article contents
Effect of thickness of thin film SnO2 based LPG sensors
Published online by Cambridge University Press: 24 May 2011
Abstract
This paper reports the response characteristics of rf-sputtered SnO2 thin films (of varying thickness) for LPG detection. To monitor and precisely measure leakages, the development of a reliable LPG sensor with improved sensitivity is crucial in preventing fatal accidents. In the present study, thin film of SnO2 is used as the sensing element for LPG sensor. The thickness of a thin film is a very important parameter and determines their main operating characteristics, such as sensor response, rate of response, and working temperature. In the present study, thickness of SnO2 film is varied between 30 nm to 180 nm. The structure, composition and optical properties of SnO2 thin films have been examined by XRD, SEM, AFM and UV-Vis. The crystallite size for 90 nm thin film (for (110) plane) is found to be the smallest ~4-5 nm. Sensor response increases with thickness of the sensing film, with a highest sensor response (~67%) observed for 90 nm thin film and thereafter it decreases. The structural and optical properties clearly support the observed enhanced sensor response for 90 nm thin film.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1288: Symposium G – Novel Fabrication Methods for Electronic Devices , 2011 , mrsf10-1288-g06-49
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 1
- Cited by