No CrossRef data available.
Article contents
Effect of the Nucleation Layer on TiO2 Nanoflowers Growth via Solvothermal Synthesis
Published online by Cambridge University Press: 14 December 2012
Abstract
TiO2 nanoflowers were obtained on modified ITO substrates by solvothermal synthesis. Surface modification was achieved with a layer of TiO2 seeds/nucleus obtained by dip-coating at various pH and dip cycles. Field emission scanning electron microscopy results indicated that at all nucleation conditions there was a dual population of TiO2 nanoparticles and nanoflowers. For a particular pH, the effect of increasing the number of dips was to increase the size and number of the nanoflowers, whereas for a fixed number of dips, the increase in pH causes a decrease in nanoflower population. The comparison with solvothermal films obtained on unmodified substrates indicates that TiO2 nanoflowers grew up on the nucleation sites. These microstructural changes determine the active surface area and sensing properties of the solvothermal films. At room temperature, no evidence of superior ethanol sensing properties was found for TiO2 nanoflowers, which show larger resistivity than TiO2 nanoparticles.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012