Published online by Cambridge University Press: 26 February 2011
The isothermal devitrification by nucleation and growth of metallic glasses is usually analysed using the Johnson-Mehl-Avrami (JMA) equation: where x is the volume fraction crystallized after time t, K is a thermally activated rate constant, τ is the nucleation lag time, and n is the so-called Avrami exponent. If the nucleation conditions and growth morphology remain unchanged during the crystallization then n is a constant. There is ample experimental evidence that for the Pd-Si system the growth process is either eutectic or interface-controlled. Therefore, one expects n=3 for crystallization on pre-existing nuclei (zero nucleation rate) and n=4 for crystallization at constant nucleation rate, both for three-dimensional growth. When the growth dimensionality is decreased by one these values decrease stepwise by one as well.